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Abstract 

Injuries and degenerative diseases of the shoulder are common and may relate to the 

joint’s complex biomechanics, which rely primarily on soft tissues to achieve stability. 

Despite the prevalence of these disorders, there is little information about their effects on 

the biomechanics of the shoulder, and a lack of evidence with which to guide clinical 

practice. Insight into these disorders and their treatments can be gained through in-vitro 

biomechanical experiments where the achieved physiologic accuracy and repeatability 

directly influence their efficacy and impact. 

This work’s rationale was that developing a simulator with greater physiologic accuracy 

and testing capabilities would improve the quantification of biomechanical parameters. 

This dissertation describes the development and validation of a simulator capable of 

performing passive assessments, which use experimenter manipulation, and active 

assessments – produced through muscle loading. Respectively, these allow the assessment 

of functional parameters such as stability, and kinematic/kinetic parameters including 

joint loading. 

The passive functionality enables specimen motion to be precisely controlled through 

independent manipulation of each rotational degree of freedom (DOF). Compared to 

unassisted manipulation, the system improved accuracy and repeatability of positioning 

the specimen (by 205% & 163%, respectively), decreased variation in DOF that are to 

remain constant (by 6.8°), and improved achievement of predefined endpoints (by 21%). 

Additionally, implementing a scapular rotation mechanism improved the physiologic 

accuracy of simulation. This enabled the clarification of the effect of secondary 

musculature on shoulder function, and the comparison of two competing clinical 

reconstructive procedures for shoulder instability.         

This was the first shoulder system to use real time kinematic feedback and PID control to 

produce active motion, which achieved unmatched accuracy (<1°) and repeatability 

(0.3°). Additionally, the controller increased the physiologic accuracy of motion 

simulation, compared to previous systems. Using these developments and custom 
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designed adjustable instrumented Reverse Total Shoulder Arthroplasty implants, the 

effects of implant parameters on muscle loading and joint load were assessed throughout 

active motion. This study provided new insights, unattainable without this research’s 

developments.  

These developments can be a powerful tool for increasing our understanding of the 

shoulder and also to provide information which can assist surgeons and improve patient 

outcomes.  

Keywords 

Shoulder motion, in-vitro simulation, biomechanics, passive simulation, active 
simulation. 
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wrt .................................................................................................................. with respect to 

𝑋�𝐴𝐵 , 𝑌�𝐴𝐵 , �̂�𝐴𝐵  .............................................................. Axes column vectors of CS A wrt CS B 

%BW ................................................................................................... Percent Body Weight 

Δθ ................................................................................................. Change in angle Theta (θ) 

^ .............................................................................. over a vector label denotes a unit vector 

° ...................................................................................................... degrees (unit of rotation) 

± ............................................ plus or minus; prefixes magnitude of one standard deviation 

Δ ..................................................................................................... (delta) indicating change 

→ ................................ between items; denotes sequence of execution in direction of arrow 
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CHAPTER 1 – Introduction 
1 - 
OVERVIEW 

This chapter explores the gross anatomy of the shoulder joint complex, its 

stabilizing mechanisms, and its physiologic function. A review is also provided of 

previous and current testing methodologies used for the assessment of static, 

passive, and active shoulder biomechanics, and of the technologies and techniques 

underlying this research. In concluding, the chapter addresses the biomechanical 

and clinical questions to be addressed, and the hypotheses of this work.  

1.1 The Shoulder Complex 

The “shoulder joint,” as it is commonly (mis)termed, is in fact composed of three bones, 

three joints, a gliding articulation, and an array of muscles, tendons and ligaments all 

functioning together to produce arm motion with the goal of positioning the hand in space 

(Jobe et al., 2009). The combined effect of these components is a joint complex capable 

of achieving the largest range of motion, greater than a hemisphere, of any in the human 

body (Culham & Peat, 1993; Peat, 1986). However, optimal joint function and kinematics 

are readily disturbed if any of these components are affected by injury or disease (Neer, 

1990).     

1.2 Anatomy 

In order to understand the function and biomechanics of the shoulder complex, it is first 

necessary to examine each component composing the joint. These components can be 

categorized as osseous constructs, passive soft tissues including joint capsule and 

ligamentous structures, and active soft tissues composed of muscle-tendon units. These 

groups are described below. 
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1.2.1 Osseous Constructs 

The shoulder complex is composed of three bones – the clavicle, the scapula, and the 

humerus, which articulate with each other and the torso through three joints – the 

sternoclavicular joint, the acromioclavicular joint, and the glenohumeral joint (Figure 

1.1). Additionally, the complex includes the scapulothoracic joint, a gliding articulation 

between the scapula and the chest wall, and the subacromial articulation, composed of the 

scapula and humerus (Culham & Peat, 1993).  

1.2.1.1 Bones 

The scapula is a triangular bone which forms the primary link between the upper limb and 

the axial skeleton (Figure 1.2), and serves as the main attachment site for many muscles 

involved in shoulder motion. These muscles originate on the torso and insert on the 

scapula to cause scapular motion, or originate on the scapular body and insert on one of 

the bones of arm to produce arm motion.  The scapula’s primary role is two-fold: to 

support the mass of the upper limb during motion, and to expand the hand’s functional 

range of motion by acting as a movable platform for the arm (Rockwood, 2009). Despite 

its function, the scapula is a very thin bone, to the point of translucency in many cases, 

and requires support from attaching muscles and articulating structures to prevent it from 

buckling (von Schroeder, Kuiper, & Botte, 2001).  

Three processes originate from the scapula: the spine, acromion, and coracoid process 

(Figure 1.2). The spine, or spinous process, originates at the medial border of the scapula 

and projects progressively more posterior to the scapular body as it moves lateral and 

superior. This process acts as an insertion for the trapezius, which originates on the torso, 

and as an origin for the posterior deltoid, which attaches on the humerus. It also creates a 

boundary to separate the supra and infra-spinatus fossae. The acromion is an extension of 

the spine at its lateral aspect that continues anterosuperior to create an arc of bone 

superior to the humeral head and which articulates with the lateral portion of the clavicle. 
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Figure 1.1: The shoulder complex 
Pictured is an illustration of the bones and joints of the shoulder complex. Anterior (left) 
and posterior (right) views of the right side of the body. 
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Figure 1.2: The osseous anatomy of the scapula and clavicle. 
Anterior (top) and posterior (bottom) views of a right scapula and clavicle. 
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It functions as an attachment for the deltoid and trapezius muscles and increases the 

middle deltoid’s moment arm (i.e. mechanical advantage) (Goss & Owens, 2009; Jobe et 

al., 2009). It is also the attachment site for one end of the coracoacromial ligament whose 

other end attaches to the coracoid process. The coracoid process is also the insertion site 

of the pectoralis minor muscle which runs from the torso, as well as the origin site of the 

conjoint tendon, which crosses the shoulder. O'Brien, Voos, Neviaser, and Drakos (2009) 

suggested that the coracoid may also act as an anterior humeral head stabilizer with the 

arm in 90° of abduction. 

Since the scapula’s role is to function as a platform for arm motion, its most important 

osseous anatomical feature is the shallow pear-shaped fossa located at the lateral aspect of 

the scapular body known as the glenoid (Figure 1.3). The glenoid surface is covered in 

hyaline cartilage, which has been found to have increasing thickness at the periphery in 

order to deepen the fossa and increase conformity with the head of the humerus 

(Soslowsky, Flatow, Bigliani, & Mow, 1992). Additionally, the fossa’s depth is further 

increased by a fibrocartilaginous ring of tissue at the rim of the glenoid termed the 

glenoid labrum. The labrum also broadens the articular surface, thus increasing the 

available contact area with the humeral head, and also serves as an attachment site for 

various glenohumeral ligaments (Culham & Peat, 1993; O'Brien et al., 2009). The 

advantage of this stabilizing soft tissue structure lies in the increased range of motion it 

permits compared to a more conforming osseous cup, as with the acetabulum of the hip 

(Itoi, Morrey, & An, 2009; Moseley & Overgaard, 1962). Glenoid fossa size and 

orientation has been assessed by a number of groups with significantly variable findings; 

however, glenoid surface area is generally accepted to be approximately 1/3 that of the 

humeral head with the labrum attached and 1/4 without, and is oriented upward by ~5° 

and between 7° retroverted and 2° anteverted (Itoi et al., 2009).      

The clavicle (Figure 1.2) is an S shaped bone (when viewed in the axial plane) that 

extends laterally from its articulation with the sternum in a predominantly horizontal 

manner when the scapula is in the neutral position. Its lateral end similarly articulates 

with the anteromedial aspect of the acromion. The role of the clavicle is to connect the 

scapula to the torso, to act as a strut to support arm loading, and to maintain separation 
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Figure 1.3: Soft tissue structures of scapula viewed from lateral. 
This figure illustrates the joint capsule, ligaments, musculotendinous junctions of the 
rotator cuff, triceps brachii, and long head of the biceps tendon. 
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between the scapula and torso which would be otherwise compromised by 

scapulothoracic and humerothoracic muscle loading. The clavicle also serves as an 

attachment site for many muscle groups and influences scapular rotation during arm 

motion (Ludewig et al., 2009; McClure, Michener, Sennett, & Karduna, 2001; Van der 

Helm & Pronk, 1995). 

The humerus (Figure 1.4) forms the proximal portion of the upper extremity. Its proximal 

end terminates as the humeral head, whose articular surface forms a third of a sphere and 

faces superior, medial, and posterior (O'Brien et al., 2009). The orientation of this 

articular surface is intended to facilitate load transmission from the arm to the torso while 

permitting maximum motion and maintaining joint stability (Itoi et al., 2009). As with the 

glenoid fossa, the humeral articular surface is coated in cartilage to disperse the 

transmitted load over a larger surface and thus decrease contact stresses on the bone; 

however, in this case, cartilage thickness is nearly constant (Soslowsky et al., 1992).  

The humeral head possesses a number of other important anatomical features including 

the lesser and greater tuberosities, and bicipital groove. Both the lesser and greater 

tuberosities originate just lateral to the articular margin of the humeral head, with the 

lesser tuberosity lying anterolateral and the greater tuberosity lying posterolateral. The 

lesser tuberosity serves as the insertion site for the subscapularis muscle of the rotator 

cuff, and the greater tuberosity serves as an attachment for the supraspinatus superiorly, 

infraspinatus posteriorly, and teres minor posteroinferiorly. The moment which can be 

applied by the supraspinatus and deltoid muscle groups about the glenohumeral joint is 

enhanced by the structure of the greater tuberosity which elevates the supraspinatus above 

30° of abduction and causes deltoid wrapping below 60° (Ackland, Pak, Richardson, & 

Pandy, 2008; Jobe et al., 2009). The bicipital groove is located between the two 

tuberosities and acts as a pathway that allows the long head of the biceps, which 

originates on the supraglenoid tubercle, to exit the glenohumeral joint. The groove also 

helps to transform the force in the biceps into a secondary stabilizer of the glenohumeral 

joint (Itoi, Newman, Kuechle, Morrey, & An, 1994). Distal to the humeral head, 

important features include the deltoid tuberosity, and medial and lateral epicondyles of 

the elbow. The deltoid tuberosity is located on the lateral surface of the humerus at 
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Figure 1.4: The osseous anatomy of the humerus. 
Posterior (left) and anterior (right) views of a right humerus. 
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approximately mid-shaft, and serves as a common insertion for the three subgroups of the 

deltoid muscle. The medial and lateral epicondyles are located within the elbow anatomy 

and serve no shoulder function but are an important landmark for physiologically 

describing shoulder motion. 

1.2.1.2 Joints  

The joints that form the shoulder complex serve two primary functions: to achieve 

maximal range of motion and to maintain sufficient stability to prevent dysfunction 

and/or injury (Jobe et al., 2009). 

The majority of the motion produced by the shoulder joint complex can be attributed to 

the glenohumeral joint which has the largest range of motion, about all three axes, of any 

diarthrodial joint in the body (An, Browne, Korinek, Tanaka, & Morrey, 1991; Halder et 

al., 2001; Howell, Galinat, Renzi, & Marone, 1988; Karduna, Williams, Williams, & 

Iannotti, 1996; Lippitt & Matsen, 1993; P. M. Ludewig et al., 2009). The articulating 

surfaces of this joint are the shallow pear shaped glenoid fossa, and the humeral head. 

The shallow structure of the glenoid effectively increases the humerus’ impingement free 

arc and thus the overall range of motion of the joint. Abduction, however, is limited by 

impingement of the prominent greater tuberosity and the acromion on the scapula 

(Culham & Peat, 1993). The surface area of the humeral head is approximately three 

times larger than the glenoid (Itoi et al., 2009; Neer, 1990) and thus only a small and ever 

changing portion of it is in contact with the glenoid throughout motion, while the glenoid 

contact patch remains relatively constant (Bey, Kline, Zauel, Kolowich, & Lock, 2010; 

Kelkar et al., 2001; Soslowsky et al., 1992; Warner et al., 1998). The radius of curvature 

of the glenoid has also been found to be slightly greater than that of the humeral head 

(Soslowsky et al., 1992) and thus it is theoretically possible that the kinematics of the 

glenohumeral joint could be characterized by both rotations and translations (Bey et al., 

2010; Itoi et al., 2009; Sahara, Sugamoto, Murai, Tanaka, & Yoshikawa, 2007). However, 

it has been shown that when the glenoid labrum, joint capsule, and glenohumeral 

ligaments are intact, sufficient stability is provided to eliminate all meaningful humeral 

head translation (Harryman et al., 1990; Howell et al., 1988; Poppen & Walker, 1976; 
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Veeger, 2000). With this in mind, the glenohumeral joint is thus typically considered a 

true three rotation ball-in-socket joint (Culham & Peat, 1993; Howell et al., 1988; Poppen 

& Walker, 1976; Veeger, 2000); however, translations of the humeral head have been 

shown to be relevant in pathological and reconstructed joint conditions, such as following 

dislocation (Apreleva et al., 1998; Burkart, Debski, Musahl, & McMahon, 2003; 

McMahon, Burkart, Musahl, & Debski, 2004). 

The acromioclavicular and sternoclavicular joints are the articulations between the lateral 

clavicle and the acromion on the scapula, and the medial clavicle and the sternum, 

respectively. Both of these joints are characterized by the fibrocartilaginous coverings on 

each bone surface and a fibrocartilaginous disc interposed between them (Culham & Peat, 

1993; Peat, 1986). Although these joints can be anatomically defined as plane synovial 

joints, the sternoclavicular joint functions similarly to a ball-in-socket joint, allowing the 

clavicle to move in a cone of motion which in turn permits scapular elevation and pro-

retraction (Culham & Peat, 1993). In contrast, the acromioclavicular joint permits 

minimal motion typically composed of inferomedial translation during excessive load 

application. The role of these two joints is to support and stabilize the scapula while 

transmitting loads axially to the torso (Culham & Peat, 1993).      

The subacromial space is formed by the rotator cuff inferiorly, the acromion superiorly, 

and the coracoid, and coracoacromial ligament anteriorly (Culham & Peat, 1993). This 

space’s primary role is to aid smooth humeral motion under the acromion, and its anterior 

structures (coracoid and coracoacromial ligament) act to stabilize the joint superiorly.  

The scapulothoracic joint is an articulation between the scapular body and the torso 

separated by the subscapularis muscle belly. The role of this articulation is to increase 

arm motion by delaying acromial impingement of the greater tuberosity during abduction 

and increasing horizontal flexion through pro-retraction (Culham & Peat, 1993). These 

motions are also critical in maintaining joint stability by ensuring that the joint loading 

direction remains within the glenoid’s articular surface, thus limiting load and potential 

damage on the soft tissue stabilizers (Lippitt & Matsen, 1993).     
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1.2.2 Joint Capsule and Ligaments 

The joint capsule and ligaments (Figure 1.3 & Figure 1.5) compose the portion of soft 

tissues in the shoulder complex responsible for providing passive stability as will be 

discussed in Section 1.5.2. 

A joint’s capsule is a thin membrane surrounding the articulating surfaces of a synovial 

joint that excretes nutrients and lubricating synovial fluid. In the glenohumeral joint, the 

capsule is relatively loose but becomes tensioned at extreme joint configurations (Peat, 

1986). Medially, the glenohumeral joint capsule blends into the glenoid labrum and rim, 

while, laterally, it attaches to the articular margin of the humeral head.     

The joint capsule is reinforced posteriorly by the infraspinatus and teres minor tendons, 

and anteriorly by both the subscapularis tendon and the glenohumeral ligaments (Clark & 

Harryman, 1992; Hess, 2000). The morphology of the glenohumeral ligaments varies but 

they are most commonly characterized as broad thickenings of the capsule superiorly, 

anteriorly, and inferiorly that may or may not blend into each other (Clark & Harryman, 

1992; Neer, 1990). This structure is believed to exist in place of the discrete ligamentous 

bands seen in other joints as a result of the need to support both tensile and shear loads 

present in the highly mobile glenohumeral joint (Debski et al. 1999b). Additionally, 

unlike other ligaments, the glenohumeral ligaments can become taut in the mid-range of 

motion, typically as a result of internal or external rotation (Burkart & Debski, 2002). 

The superior and middle glenohumeral ligaments originate at the superior glenoid 

between the biceps tubercle and the base of the coracoid (Figure 1.5). The superior 

ligament inserts on the humerus between the upper lesser tuberosity and the anatomical 

neck, and acts to limit inferior humeral head translation with the arm adducted (Burkart & 

Debski, 2002; Culham & Peat, 1993; Kask et al., 2010). The middle ligament inserts on 

the anterior aspect of the anatomical humeral neck and limits anterior translation and 

external rotation in mid-abduction (Burkart & Debski, 2002; Culham & Peat, 1993). The 

inferior glenohumeral ligament attaches to the anterior, inferior, and posterior aspects of 

the glenoid labrum, and inserts on the inferior anatomic and surgical neck of the humerus. 

This ligament is further sub-divided into an anterior band and axillary pouch, and  
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Figure 1.5: Anterolateral view of the joint capsule and ligaments. 
In this isometric view of a right shoulder, in addition to the other structures, note that the 
three bands of the glenohumeral ligaments blend together and with the joint capsule.  
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posterior band. The former has been found to limit external rotation and anterior 

translation during abduction while the latter limits internal rotation and posterior 

translation in abduction (Burkart & Debski, 2002; Culham & Peat, 1993). 

The transverse humeral ligament runs from the lesser to the greater tuberosity, thus 

covering the bicipital groove and creating a tunnel for the biceps tendon, helping to 

maintain the muscle’s line-of-action throughout motion (Jobe et al., 2009). 

The coracoacromial ligament runs from the horizontal pillar of the coracoid to the 

anterior aspect of the acromion, and together, these three structures form what is known 

as the coracoacromial arch. The role of the arch is to articulate with the humerus and 

prevent it from migrating superiorly due to external or muscle loading (Itoi et al., 2009). 

The coracoclavicular ligament runs from the vertical pillar and angle of the coracoid to 

the clavicle and helps to support the scapula while also preventing the clavicle from 

translating posteriorly (Neer, 1990). The acromioclavicular ligament forms a portion of 

the acromioclavicular joint and provides it with horizontal stability.   

1.2.3 Muscles 

The large number of muscles that enable motion and provide stability in the shoulder 

complex are commonly grouped based on their combined origin and insertion sites as the 

scapulohumeral, humerothoracic, scapulothoracic, and multi-joint muscles. Each of the 

muscles in these groups are described below and illustrated in Figure 1.6, Figure 1.7, and 

Figure 1.8.    

1.2.3.1 Scapulohumeral Muscles 

The scapulohumeral muscles are those muscles that originate on the scapula and insert on 

the humerus and consequently play the largest role in achieving glenohumeral motion and 

stability. These muscles are the deltoid, supraspinatus, subscapularis, infraspinatus, teres 

minor, teres major, and coracobrachialis. 

The primary function of the deltoid is abduction of the humerus and has been found to 

provide approximately 50% of the total required glenohumeral abduction moment 
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Figure 1.6: The muscular origins and insertions on the scapula. 
Anterior (top) and posterior (bottom) view of a right scapula. 
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Figure 1.7: The muscular origins and insertions on the humerus. 
Posterior (left) and anterior (right) view of a right humerus. 
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Figure 1.8: The muscles of the shoulder complex. 
Anterior (top) and posterior (bottom) views of a right shoulder. 
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(Hess, 2000). The deltoid muscle can be divided into three independently functioning 

sub-regions: anterior, middle, and posterior. The largest proportion of the total moment 

produced by the deltoid is a result of anterior and middle deltoid loading, with the 

posterior deltoid contributing a much smaller portion (Ackland et al., 2008). Controversy 

exists with respect to the posterior deltoid’s precise function, with some investigators 

showing that it possesses an adduction instead of an abduction moment arm when the arm 

is in its resting position (Ackland et al., 2008). In addition to their role in abduction, the 

anterior and posterior deltoids contribute to flexion and internal rotation, and extension 

and external rotation, respectively (Ackland & Pandy, 2011). 

The rotator cuff is composed of four muscle bellies (supraspinatus, subscapularis, 

infraspinatus, and teres minor) and associated tendons, as well as the joint capsule, and 

glenohumeral ligaments. This blended structure surrounds the glenohumeral joint 

anteriorly, superiorly, and posteriorly. It is believed that the primary function of the 

rotator cuff is to provide stability to the joint during motion (Culham & Peat, 1993), but it 

has also been identified as a source of both abduction and axial rotation moments (Neer, 

1990). It has also been noted that although each of the rotator cuff muscles can be 

activated independently, the high level of interconnection of these groups through their 

musculotendinous junctions and the joint capsule may cause loading of one muscle to 

influence the passive tension of another (Soslowsky, Carpenter, Bucchieri, & Flatow, 

1997). 

The supraspinatus originates on the supraspinous fossa of the scapula, between its spine 

and superior edge, and inserts on the humeral greater tuberosity. This muscle is activated 

during elevation motions (Howell et al., 1988; Kedgley et al., 2008; Wuelker, Plitz, 

Roetman, & Wirth, 1994; Wuelker, Schmotzer, Thren, & Korell, 1994). The role of the 

supraspinatus in elevation is especially prominent during the initiation of abduction 

(Ackland et al., 2008; Kedgley et al., 2007).  

The subscapular fossa, the entire anterior face of the scapula, serves as the origin of the 

subscapularis, which in turn inserts on the humeral head at the lesser tuberosity. Ackland 

et al. (2008) have demonstrated that the subscapularis is composed of a superior and 
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inferior portion that can be loaded separately. The inferior portion’s role is primarily 

stabilization, since it has a relatively smaller ability to apply moments compared to the 

superior portion, which itself provides joint stability while also being capable of applying 

forward flexion moments. The primary moment applied by each of these sub-regions is 

internal rotation (Ackland & Pandy, 2011; Escamilla, Yamashiro, Paulos, & Andrews, 

2009; Jenp, Malanga, Growney, & An, 1996).  

The infraspinatus originates on the infraspinatus fossa, which lies inferior to the scapular 

spine, and inserts on the posterior aspect of the greater tuberosity. Similar to the 

subscapularis, the infraspinatus is composed of a superior and inferior portion. The 

infraspinatus possesses an abduction moment arm (Ackland et al., 2008), but it is much 

smaller than the flexion moment arm of the subscapularis. Therefore, the role of the 

infraspinatus is more predominantly stabilization than motion production. As with the 

subscapularis, the primary moment applied by each of these sub-regions produces axial 

rotation, which in this case, is external (Ackland & Pandy, 2011; Escamilla et al., 2009; 

Jenp et al., 1996). 

The teres minor and major both originate on the lateral border of the scapula with the 

minor located superior to the major. The teres minor blends with the infraspinatus and 

inserts on the greater tuberosity while the teres major inserts on anterior humeral shaft. 

The role of each of these muscles is primarily joint stabilization and humeral adduction 

(Neer, 1990) with the teres minor also producing external rotation and the teres major 

producing internal rotation (Ackland & Pandy, 2011). 

The coracobrachialis originates on the tip of the coracoid process and inserts on the 

anteromedial aspect of the humeral shaft. The role of this muscle is to adduct and flex 

(Ackland et al., 2008), but electromyography studies have shown that it is only active 

during resisted adduction (Jonsson, Olofsson, & Steffner, 1972). 

1.2.3.2  Humerothoracic Muscles 

The humerothoracic muscles – those muscles which originate on the thoracic cage and 

insert on the humerus – are the pectoralis major and the latissimus dorsi. The pectoralis 
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major originates on anterior surface of the medial half of the clavicle and the sternum and 

inserts on the lateral lip of the bicipital groove. The role of this muscle is to adduct, flex, 

and internally rotate (Ackland & Pandy, 2011; Ackland et al., 2008).  The latissimus dorsi 

has broad origins on the lower thoracic and upper lumbar vertebrae, the iliac crest of the 

pelvis, the inferior three ribs, and the inferior angle of the scapula, and it inserts on the 

floor of the bicipital groove. The function of this muscle is to adduct, extend, and 

internally rotate the humerus (Ackland & Pandy, 2011; Ackland et al., 2008). 

1.2.3.3   Scapulothoracic Muscles 

The scapulothoracic muscles – those muscles which originate on the thoracic cage and 

insert on the scapula – are the serratus anterior, levator scapulae, rhomboids, trapezius, 

and pectoralis minor. The serratus anterior inserts on the anterior side of the scapula along 

the entire length of the medial scapular border. Conversely, the levator scapulae and 

rhomboids insert on the posterior surface of this medial border. The trapezius inserts on 

the superior edge of the scapular spine, and the pectoralis minor inserts on the anterior 

aspect of the horizontal pillar of the coracoid process. Each of these muscles is 

responsible for a different movement of the scapula relative to the torso including 

scapular elevation, tilting, and version. 

1.2.3.4  Biarticular Muscles 

In the shoulder, there are three biarticular muscles, or muscles which cross more than one 

joint from origin to insertion. These muscles are the triceps brachii and the short and long 

heads of the biceps brachii. Each of these muscles primarily affects elbow motion; 

however, their paths across the glenohumeral joint influence shoulder joint function and 

kinematics. The long head of the triceps originates on the lateral scapular border just 

inferior to the glenoid rim, crosses the glenohumeral and elbow joints, and inserts on the 

ulna.  The role of the triceps with respect to shoulder function is limited, but has been 

shown to resist inferior shear forces induced by the primary adductor muscles during 

resisted adduction activities (Jobe et al., 2009). The biceps brachii originates as two 

distinct heads, the short head from the tip of the coracoid process and the long head from 

 



www.manaraa.com

20 

the supraglenoid tuberacle, exiting through the bicipital groove. These two heads 

converge at the level of the deltoid tuberosity and cross the elbow before inserting on the 

radius. The long head of the biceps depresses the humeral head due to the pulley effect of 

it wrapping over the humeral head, and has been shown to stabilize the joint anteriorly 

(Itoi, Newman et al., 1994; Itoi, Newman et al., 1994). The role of the short head of the 

biceps remains unclear but some have proposed that it provides resistance to anterior 

translation of the humeral head primarily by providing a barrier when taut (Itoi et al., 

2009).   

1.3 Function 

The functional purpose of the shoulder complex is to allow the placement of the hand in 

space across the largest possible range of motion while maintaining joint stability (Itoi et 

al., 2009). The degree of mobility of the joint, number of degrees of freedom (DOF), and 

possible interplay between scapulothoracic and glenohumeral motion, mean that 

placement of the hand can be achieved using multiple pathways. Each of these pathways 

will use a unique combination of independent joint rotations and thus the same hand 

position may result in significantly differing joint contact patterns and kinetics.  

1.4 Humerothoracic Motions   
Humeral movement with reference to the thorax is commonly described in terms of four 

motions: elevation, forward flexion, horizontal flexion-extension, and axial rotation 

(Figure 1.9). These motions result from motion of both the humerus and the scapula and 

can be more precisely described using three independent rotations of each bone. The 

rotations of the humerus relative to the scapula can be described as the rotation which 

defines the plane in which the humerus elevates (plane of elevation), the rotation which 

moves the humerus away from the body (elevation), and the rotation about the long axis 

of the humerus (axial rotation). The scapula’s rotations relative to the thorax are in turn 

rotation of the scapula across the chest and away from the mid-line (elevation), rotation 

about a superior axis which changes the direction of the glenoid (internal-external 

rotations), and rotation about a lateral axis tilts the glenoid (anterior-posterior tilting) 

(Figure 1.10). 
 



www.manaraa.com

  

 

 
Figure 1.9: Humeral rotations used to describe motion. 
Sequence of rotations used to describe humeral orientation relative to the scapula. (A) Humerus at rest with epicondyles in coronal 
plane; (B) humerus with epicondyles in scapular plane following ‘plane of elevation’ rotation indicated in (A); (C) humerus parallel to 
ground following ‘abduction’ rotation indicated in (B); (D) humerus ‘externally’ rotated following rotation indicated in (C).
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Figure 1.10: Scapular rotations used to describe motion. 
Displayed are rotations about the axes most commonly used to describe scapular orientation relative to the thorax. Version rotation 
(left) showing scapula moving into anteversion; elevation rotation (middle) showing scapula upwardly rotating; tilting rotation (right) 
showing scapula moving into a posterior tilt. 
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‘Elevation’ is the common term used to describe the motion of the arm away from the 

body in the lateral direction. Although this motion may be thought of as movement in the 

coronal plane, it is more common for this motion to occur in the scapular plane – which 

lies ~30° anterior – in which the deltoid and supraspinatus are optimally aligned for 

elevation. (Itoi et al., 2009; Poppen & Walker, 1976). This motion may exceed 180° of 

rotation but on average is limited to 171° for women and 167° for men (Itoi et al., 2009).  

This range of motion, however, is influenced by individual anatomy and laxity, and 

decreases with age due to joint stiffening and degenerative muscle changes (Barnes, Van 

Steyn, & Fischer, 2001). In order to achieve optimal joint function, stability, and 

kinematics, this large range of motion is divided between glenohumeral elevation and 

scapulothoracic elevation. Combining these two motions optimizes function in three 

ways. First, it enables an arm range of motion unattainable through glenohumeral joint 

only, because a 180° rotation at this joint would trap the muscles within the articulation, 

rendering them non-functional (Van der Helm & Pronk, 1995). Second, the decreased 

ROM of each joint allows the muscles crossing the joint to function within the optimal 

region of their length-tension curve (Itoi et al., 2009). Third, the presence of scapular 

rotation moves the glenoid beneath the humeral head, providing support against the 

weight of the arm, and thus maintaining optimal joint kinetics, kinematics, and stability 

(Itoi et al., 2009).  

The manner in which the arm’s motion is divided between the glenohumeral and 

scapulothoracic joints during elevation is termed the ‘scapulohumeral rhythm.’ In 1944, 

Inman and Abbott, described that when averaging the rhythm over a full range of motion, 

its ratio is 2:1 (glenohumeral:scapulothoracic). Plane of abduction, direction of motion 

(raising vs. lowering), shoulder dominance, gender, level of resistance, and level of 

muscle fatigue have been widely studied in relation to this rhythm since then (see 

Crosbie, Kilbreath, Hollmann, & York, 2008; Crosbie, Kilbreath, & Dylke, 2010; 

Dayanidhi, Orlin, Kozin, Duff, & Karduna, 2005; Ebaugh, McClure, & Karduna, 2005; 

Fayad et al., 2006; Forte, de Castro, de Toledo, Ribeiro, & Loss, 2009; Graichen et al., 

2000; Inman & Abbott, 1944; Ludewig et al., 2009; Ludewig, Cook, & Nawoczenski, 
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1996; Matsuki et al., 2010; McClure et al., 2001; McClure, Michener, & Karduna, 2006; 

McQuade & Smidt, 1998; Nagai et al., 2013; Poppen & Walker, 1976; Prinold, Villette, 

& Bull, 2013; Scibek & Carcia, 2012; Yano et al., 2010). While these investigations have 

resulted in varying and often contradictory conclusions, some supporting one constant 

ratio, and others, a variable ratio across motion, the commonly accepted ratio remains 

Inman & Abbott's (1944) 2:1 (glenohumeral:scapulothoracic) for a full range of 

abduction. 

In addition to elevating during humeral elevation, the scapula has also been shown to 

undergo internal-rotation and tilting. Reports of the initial direction and magnitude of 

movement of these two rotations vary; however, it has been shown that across a full range 

of abduction, the scapula tends to externally rotate and tilt posteriorly relative to its initial 

resting posture, with the majority of this motion occurring beyond 90° of humerothoracic 

elevation (Itoi et al., 2009; McClure et al., 2001). The function of these rotations is not 

well understood, but McClure et al. (2001) posit that they allow the humeral head and 

rotator cuff tendons to more easily pass beneath the acromion as the humerus elevates 

beyond 90°. The ability of the humeral head and rotator cuff to clear beneath the 

acromion is also aided by external rotation of the humerus, which occurs during elevation 

in any plane anterior to the scapula. Browne, Hoffmeyer, Tanaka, An, and Morrey (1990) 

demonstrated that maximal elevation occurs 23° anterior to the scapular plane and is 

facilitated by 35° of external rotation. This external rotation has the additional effect of 

relaxing the inferior capsuloligamentous tissues, thus permitting further motion. In 

contrast, maximal elevation in planes posterior to the scapula requires internal rotation 

and peaks at 115° in a plane ~20-30° posterior to the scapula (Browne et al., 1990). 

The term ‘forward flexion’ is commonly used to describe motion of the arm away from 

the body in the anterior direction. This motion can be considered a special case of 

elevation in a plane anterior to the scapula; however, this is only the case if the humerus 

is internally rotated prior to elevation. If the humerus is instead left in neutral rotation, the 

glenohumeral kinematics and contact mechanics would be significantly different. It is the 

latter case which is commonly termed ‘forward flexion.’ Despite this motion’s unique 

 



www.manaraa.com

25 

glenohumeral kinematics, the scapula’s motion is remarkably similar to that observed 

during elevation in the scapular plane (McClure et al., 2001).    

Horizontal flexion-extension is a common motion – especially in throwing sports – which 

involves changes in the humeral plane of elevation while the elevation level is maintained 

parallel to the ground, and for which internal-external rotation can be constant or variable. 

The boundary between flexion and extension is commonly considered to be the scapular 

plane. Itoi et al. (2009) have found that when the arm is placed in this plane and 

externally rotated, the glenohumeral joint achieves maximum stability. However, in 

patients with anterior shoulder instability, orientation in this plane, as well as planes 

posterior to the scapular plane, have been described as the most unstable (Speer, 

Hannafin, Altchek, & Warren, 1994). Scapular kinematics for horizontal flexion-

extension have not been evaluated during independent rotation about this one axis, but 

rather only during throwing motions. However, results from throwing motions have 

shown that scapular upward rotation is decreased to approximately 20° with the arm in 

full humeral horizontal extension from approximately 40° with the arm in the scapular 

plane (Ludewig et al., 2009). Additionally, the scapula progressively internally rotates 

from approximately 20° in maximal horizontal extension to its resting posture of 30° 

when the humerus is in the scapular plane. 

For the remainder of this thesis, glenohumeral elevation in the scapular plane will be 

termed ‘abduction,’ while the rotation defining this plane will be termed ‘plane of 

elevation,’ and rotation about the humeral longitudinal axis will be termed ‘internal-

external rotation’.  

1.5 Joint Stabilizers  

Stability of the glenohumeral joint is provided by a combination of a number of different 

types of stabilizing structures. These can be classified as static or dynamic (Itoi et al., 

2009). Static stabilizing structures include the joint’s bony anatomy, as well as the 

following passive soft tissues: joint capsule, ligaments, and labrum. Dynamic stability is 

provided by activation of various muscle groups. The work of Burkhart and Debski has 
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demonstrated that no single structure is primarily responsible for stability across the 

shoulder’s large range of motion, but that instead, stability is produced through a 

combination of factors (Burkart & Debski, 2002; Debski, Sakane, Wong, Fu, & Warner, 

1999; Debski et al., 1999b). This combination of factors is critical in enabling shoulder 

motion, but this dependence on an array of stabilizers – especially soft tissue stabilizers – 

results in the shoulder being the most unstable joint in the body (Itoi et al., 2009; Jobe et 

al., 2009). Specifically, the shoulder is most unstable anteriorly but patients also 

commonly experience instability inferiorly and posteriorly (Peat, 1986; Speer et al., 

1994). 

1.5.1 Bony Anatomy 

The bony anatomy of the glenohumeral joint is significantly less conforming than that of 

other major joints in the body and as a result, its primary stabilizing effect is restricted to 

resisting joint subluxation due to the arm’s gravitational loading. This role is especially 

relevant in abducted arm positions where the scapula rotates such that the glenoid sits 

more directly beneath the humeral head (Itoi et al., 2009). Additionally, the bony 

structures’ stabilizing role in relation to shear forces resulting from muscle loading has 

been shown to be minimal (Halder, Kuhl, Zobitz, Larson, & An, 2001; Lippitt & Matsen, 

1993; Lippitt et al., 1993). This can be attributed to the low conformity and small contact 

area between the glenoid and humeral head (Soslowsky, Flatow, Bigliani, & Mow, 1992; 

Soslowsky et al., 1992). In fact, it is only with the addition of the glenoid labrum that 

meaningful stabilization is achieved by the glenoid (Itoi et al., 2009; Peat, 1986). Two of 

the scapula’s other bony processes are also thought to play a limited role in joint stability. 

In extreme motions, the acromion is believed to prevent excessive superior migration of 

the humeral head (Itoi et al., 2009) while the coracoid limits anterior translation (O'Brien 

et al., 2009).    
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1.5.2 Soft Tissue Passive Stabilizers 

The joint capsule, glenoid labrum, and ligaments greatly increase the stability of the 

glenohumeral joint by directly augmenting the effect of the bony anatomy and by 

restraining against forces and motions which cannot be resisted by the osseous structures. 

1.5.2.1 Joint Capsule 

The soft tissues composing the glenohumeral joint capsule have been shown to have little 

direct mechanical stabilizing ability especially in the mid-range of motion. Debski et al. 

(1999b) found that with the humerus in neutral rotation and the humeral head well 

centered, the joint capsule in fact carries no load. It does, however, mechanically stabilize 

the joint when it is placed in extreme positions such as maximal abduction (Burkart & 

Debski, 2002; Debski et al., 1999). Some investigators have found that disruption of the 

anteroinferior capsule has minimal effect on joint translation during abduction in external 

rotation (Apreleva et al., 1998) while others have shown that anterior capsular disruption 

increases humeral translations at maximal abduction while posterior disruption increases 

posterior translations between 60 and 90° of abduction (Ovesen & Nielsen, 1986). These 

differing findings may be explained by the effect of externally rotating the humerus 

which could tighten the remaining anterior soft tissues and prevent humeral translations.   

Perhaps the most important stabilizing effect of the joint capsule does not relate to direct 

mechanical stabilization, but instead is a result of the fluid filled cavity created by the 

capsule that causes negative intra-articular pressure (Itoi et al., 2009). Although this 

pressure is small, it has been shown to be a significant contributor to joint stability 

especially when the joint is subject to minimal muscle and joint loading (Alexander, 

Southgate, Bull, & Wallace, 2013; Habermeyer, Schuller, & Wiedemann, 1992; 

Hurschler, Wülker, & Mendila, 2000).     
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1.5.2.2 Glenoid Labrum 

Although the joint capsule is an important stabilizer to the minimally loaded joint, its 

effect is far outweighed by that of the glenoid labrum, especially when the joint is loaded 

(Itoi et al., 2009). The labrum increases the contact area with the humeral head and 

deepens the glenoid socket by approximately double the depth of the bony anatomy alone 

(Itoi, Hsu, & An, 1996; Soslowsky et al., 1992). These anatomical changes increase the 

concavity compression effect of the glenoid (Lippitt et al., 1993) which has been shown 

to improve the stability ratio – the ratio of dislocating force to compression force – in all 

directions. It has also been shown that surgical removal results in marked decreases in the 

stability ratio (Halder et al., 2001; Lippitt & Matsen, 1993; Lippitt et al., 1993). 

1.5.2.3 Ligaments 

The three bands of the glenohumeral ligaments are the most important stabilizer when the 

arm is placed in extreme positions since they act to maintain the humeral head centered 

on the glenoid (Burkart & Debski, 2002; Clark & Harryman, 1992; Debskiet al., 1999b; 

Itoi et al., 2009; Jobe et al., 2009; Karduna et al., 1996); however, these ligaments have 

little effect on stability with the arm in the mid-range of motion since they, along with the 

joint capsule, are lax in this position (Itoi et al., 2009). 

1.5.3 Soft Tissue Active Stabilizers – Muscles 

As described above, the glenohumeral joint is largely unconstrained and the bony 

anatomy and soft tissue passive stabilizers are insufficient to maintain stability across 

large arcs of motion. Thus, the muscles crossing the glenohumeral joint, in addition to 

producing motion, play an uncommonly important role in stabilizing the joint. The 

contribution of muscle activity to glenohumeral stability can be achieved through a 

combination of five different stabilizing mechanisms: 

1. Passive Muscle Tension – it is thought that the natural resting length of the 

shoulder muscles plays some role in maintaining joint stability by providing joint 

compression as the tissues are stressed (Itoi et al., 2009; Ovesen & Nielsen, 1986); 
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however, observation of this effect has been inconsistent and, as with passive soft 

tissues, the effect is likely minimal in the mid-range of motion (Motzkin, Itoi, 

Morrey, & An, 1994). 

2. Compression of the Articular Surface – the joint load resulting from muscle 

activity causes compression of the two articular surfaces and induces concavity 

compression (Itoi et al., 2009) which is enhanced by the glenoid labrum as 

discussed in 1.5.2.2. The role of this stabilizing phenomenon has been widely 

studied for an array of healthy and dysfunctional joint conditions (Howell & 

Kraft, 1991; Karduna et al., 1996; Kedgley et al., 2007; Kedgley et al., 2008; 

Lippitt & Matsen, 1993; Lippitt et al., 1993; McMahon et al., 1995). 

3. Muscle Induced Motion Causing Secondary Tightening of Passive Stabilizers 

– the muscles move the shoulder to an extreme position which causes the passive 

stabilizers to provide additional stabilization (Itoi et al., 2009).  

4. Barrier Effect of Active Muscles – when a muscle is active, it shortens and 

becomes taut. This in turn creates a semi-rigid barrier which is capable of resisting 

humeral head translation (Itoi et al., 2009). The barrier effect is most pronounced 

when a muscle that wraps over a bony structure is tensioned. Application of this 

tension causes the muscle to apply a force to the bone it is wrapping over which is 

normal to its line of action. This force can effectively increase joint stability 

especially when balanced by forces from other wrapped muscles.    

5. Centralization of Joint Reaction Force – in order to maintain joint stability, it is 

essential that the joint reaction force is directed within the articular surface of the 

glenoid (Lippitt & Matsen, 1993). This can be achieved through activity of 

muscles which are not primarily responsible for motion, such as the anterior and 

posterior rotator cuff during abduction. 

As the largest single muscle group crossing the glenohumeral joint, many have proposed 

that the deltoid is an important dynamic stabilizer; however, little research has been 

performed to demonstrate its role. Motzkin et al. (1994) demonstrated that the deltoid in 

fact has little passive effect on inferior stability in adduction or abduction. Others have 

demonstrated that activity of some sub-groups of the deltoid provide stability during 
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abduction in the scapular plane but not in the coronal plane (Lee & An, 2002; Michiels & 

Bodem, 1992). Kido et al. (2003) found that the stabilizing function of the deltoid is 

enhanced in abduction and external rotation when the joint becomes increasingly 

unbalanced. Still others have argued that the morphology of the acromion is an important 

factor in whether the deltoid acts as a stabilizer or destabilizer; in people with large lateral 

extension of the acromion, the deltoids are forced to originate more lateral and thus have 

a more vertical line-of-action which may destabilize the joint superiorly (Nyffeler, 

Werner, Sukthankar, Schmid, & Gerber, 2006). 

Although the rotator cuff muscles play an important role in producing arm motion, they 

are often largely considered as stabilizers of the shoulder. In comparison to the deltoid, 

the physiological lines of action of the rotator cuffs are nearly concentric and thus, in a 

healthy shoulder, activity within these groups effectively compresses the humeral head 

into the glenoid concavity creating stability and ball-in-socket kinematics (Itoi et al., 

2009). This effect persists throughout motion but is the most critical to joint stability 

when the arm is in the mid-range of motion where passive stabilizers are ineffective 

(Harryman et al., 1990; Itoi et al., 2009; Lippitt & Matsen, 1993). In addition to 

compressing the articular surfaces, the inferior angulation of the subscapularis, 

infraspinatus, and teres minor are able to produce a force couple with the superior 

deltoids which can help to medialize the joint reaction force. Were they not activated, the 

joint reaction force would be directed superiorly (Sharkey & Marder, 1995). The 

stabilizing role of the supraspinatus in both the inferior and superior directions has been 

studied but remains unclear. Traditionally, the supraspinatus has been viewed as a 

superior stabilizer due to its location (Sharkey & Marder, 1995; Thompson et al., 1996); 

however, more recent research has disputed this claim (Halder, Zhao, O'driscoll, Morrey, 

& An, 2001). Similarly, it is often thought that the supraspinatus tethers the humeral head 

and prevents inferior instability (Soslowsky, Malicky, & Blasier, 1997); however, 

research has shown that intact force couples in the horizontal and frontal planes are a 

more important stabilizing factor (Halder et al., 2001; Sharkey & Marder, 1995; 

Thompson et al., 1996). 
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The long head of the biceps has also been shown to be a joint stabilizer in all directions.  

As a result of its wrapped path over the humeral head, the biceps’ primary stabilizing 

effect is to resist superior movement by depressing the humeral head. The stabilizing 

effect is most pronounced in the anterior direction with the arm in external rotation (Itoi, 

Kuechle, Morrey, & An, 1993; Itoi, Newman et al., 1994; Itoi et al., 2009). 

1.6 Techniques in the Study of Glenohumeral Joint 
Biomechanics 

In the field of biomechanics, there are three broad techniques that can be used to assess 

outcome measures of interest: in-vivo, in-silico, and in-vitro. Each of these models has 

strengths but also suffers from limitations.  

In-vivo biomechanical research encompasses any study which seeks to answer a question 

through the use of live subjects. Many researchers have used this model to assess normal 

shoulder biomechanics, pathological changes, and repaired function. These investigations 

have used an array of technologies including goniometers and potentiometers to measure 

static osseous rotations (Doody, Freedman, & Waterland, 1970; Ludewig et al., 1996; 

Van der Helm & Pronk, 1995), single plane radiography to assess 2D static joint 

kinematics (Chopp, O'Neill, Hurley, & Dickerson, 2010; Keener, Wei, Kim, Steger-May, 

& Yamaguchi, 2009; Mercer et al., 2011; Poppen & Walker, 1976), optical and 

electromagnetic tracking devices to measure continuous joint kinematics (Harryman et 

al., 1990; Karduna et al., 1996; McClure et al., 2001; McClure et al., 2006; McQuade & 

Smidt, 1998), magnetic resonance imaging (MRI) to assess 2D and 3D joint mechanics 

(Graichen et al., 2000; Graichen et al., 1998; Graichen et al., 2005; Pierrart et al., 2013; 

Sahara et al., 2007), and bi-plane radiography to continuously assess 3D joint kinematics 

and contact mechanics (Bey, Zauel, Brock, & Tashman, 2006; Bey et al., 2007; Bey et al., 

2010; Giphart, van der Meijden, Olivier, & Millett, 2012; Matsuki et al., 2010).  This type 

of study is the most externally valid as data can be measured under completely accurate 

environmental and loading conditions on a subject group that can be chosen to match a 

desired populations of interest. However, in-vivo research is limited in its ability to assess 

competing treatment options due to ethical constraints and to achieve high repeatability 
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with respect to specific parameters of interest such as injury type, size, position, etc. and 

repair technique.   

The in-silico approach to biomechanical research is the newest, and involves the 

development of computer models and computational methods to replicate the anatomy of 

the joint and simulate the loading and motion it experiences. In-silico modelling can 

include Finite Element Analysis (FEA) techniques which consider material properties, 

applied forces, and contact mechanics to assess the stresses and deformation in a system 

(Harrysson, Hosni, & Nayfeh, 2007; Sharma, Debski, McMahon, & Robertson, 2010; 

Terrier, Brighenti, Pioletti, & Farron, 2012; Terrier, Buchler, & Farron, 2005; Terrier, 

Buchler, & Farron, 2006; Terrier, Ramondetti, Merlini, Pioletti, & Farron, 2010; Virani et 

al., 2008; Walia, Miniaci, Jones, & Fening, 2013; Yongpravat et al., 2013; Zhang et al., 

2013), rigid body dynamic musculoskeletal modelling which accounts for bony anatomy 

as well as muscle lines of action and loading in order to evaluate joint kinetics and 

kinematics (Bolsterlee, Veeger, & Chadwick, 2013; Nikooyan et al., 2010; Veeger, Van 

der Helm, Van der Woude, Pronk, & Rozendal, 1991), and statistical shape modelling 

which can evaluate osseous anatomy across a population in order to better understand 

implant design considerations (Blanc, Syrkina, & Székely, 2009; Querol, Büchler, 

Rueckert, Nolte, & Ballester, 2006; Yang, Rueckert, & Bull, 2008). These types of 

investigations have proven useful as they are highly adaptable, and, compared to in-vivo 

or in-vitro studies, allow many more conditions to be tested and compared, and allow 

variables to be assessed in a more systematic manner. However, in many cases, these 

approaches have lower external validity in comparison to in-vivo and in-vitro research, 

primarily due to the assumptions which must be made in order for the model to 

approximate the living condition. Specifically, whereas in-vivo research allows testing in 

the native environment and in-vitro research (described subsequently) uses the native 

anatomy but must replicate the environment, in-silico research must replicate both of 

these factors.  

In-vitro research methods make use of samples drawn from the native anatomy of living 

or deceased donors and can range from small tissue samples to whole joint/limb cadaveric 
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specimens. The testing systems used with these methods vary in complexity, from very 

simple systems used to replicate a specific parameter on a discrete tissue sample to very 

complex systems which aim to replicate the in-vivo environment experienced by a joint as 

much as possible. In-vitro investigations of the shoulder regularly involve the use of 

benchtop testing apparatuses which apply prescribed loads or displacements to a sample 

ranging from a single tissue band to a full joint; however, muscle loading and joint 

motion are not considered (Panossian et al., 2005; Sano et al., 1997). More complex 

devices use full joint specimens and may or may not involve muscle loading but do 

quantify overall joint motion and stability (Itoi et al., 1993, Itoi, Newman et al., 1994; 

McMahon, Chow, Sciaroni, Yang, & Lee, 2003). The most complex testing protocols use 

muscle forces in order to produce joint motion and thus they allow the most accurate 

replication of in-vivo joint function (Debski et al., 1995; Kedgley et al., 2007; Wuelker et 

al., 1994). In-vitro investigations integrate the strengths of both in-vivo and in-silico 

research by using the native anatomy as used in in-vivo testing, while also enabling the 

evaluation of a range of testing conditions as assessed using in-silico methods. The 

limitations of this technique, however, lie in its inability to truly replicate the in-vivo 

environment of the shoulder and in the potential for the specimen’s properties to change 

during testing. 

The study of shoulder biomechanics through in-vitro testing requires the use of a wide 

array of technologies and processes in order to acquire meaningful data. This is especially 

the case for whole joint experimental protocols, where the environmental conditions to be 

replicated are particularly complex. In these cases, relevant biomechanical outcomes 

commonly require the measurement of joint motion and various types of loading data, and 

the subsequent manipulation of these data streams into a physiologically meaningful 

form. To replicate the desired environment and acquire these data streams, it is necessary 

to implement relevant technologies. These include actuation methods such as pneumatic 

and/or servomotor devices to produce loading and motion, a spatial tracking system to 

record position data for real-time and post-hoc use, and application specific load sensors 

to assess the relevant kinetics. In order for these data to be meaningful, it is also necessary 

to implement coordinate transformations of both bone and testing components, to 
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construct bone fixed coordinate systems from surface digitizations, and to perform a 

rotation sequence analysis such as Euler Angle decomposition.        

1.6.1 The Technologies of In-Vitro Biomechanical Research 

1.6.1.1 Actuation Methods 

Replication of the loading environment represents the most important goal when 

designing a whole joint experimental protocol, and can be achieved through the selection 

of appropriate actuation technologies. The primary means of actuation used for in-vitro 

biomechanical experimentation are pneumatic cylinders and computer controlled DC 

servo-motors. These two technologies are equally valuable in applying loads to cadaveric 

specimens; however, each exhibits unique strengths and limitations which lend them to 

different applications.   

Pneumatic actuation is inexpensive, does not require large amounts of equipment, and is 

simple to implement, and thus, has traditionally been the more common means for 

applying loads in the field of in-vitro biomechanics (Dunning, Duck, King, & Johnson, 

2001; Kedgley et al., 2007). A typical pneumatic system is composed of an air compress 

to supply a constant pressure source, a computer controlled proportional pressure 

controller, and a pneumatic cylinder to apply the force. This type of actuation is always 

dictated by the applied load and cannot easily be controlled with respect to variables such 

as position or velocity of the piston. This limitation, therefore, precludes pneumatic 

actuators from being used in in-vitro applications where its role would be to maintain a 

structure at a given position or to move it at a desired velocity. Instead, pneumatics are 

most often used to apply constant loads or loads which vary in a predefined way. 

Additionally, in the context of applying forces to a muscle group, pneumatics can be 

limited by the length of their stroke and in some cases this precludes their use with 

muscles which experience large amounts of shortening during motion. A final limitation 

of pneumatics is the compressibility of the working fluid (air) which causes the 

performance of the actuator to suffer as higher, rapidly changing pressure levels are 

required.  
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In some situations, one or more of these limitations may preclude the use of pneumatics. 

In such cases, DC servo-motor driven actuators are a useful alternative method for the 

application of force and motion in a whole joint experimental protocol (Debski et al., 

1995; Ferreira, Johnson, & King, 2010). In comparison to a pneumatic system, a DC 

servo-motor system has less required infrastructure; however, the control of this type of 

actuator and integration of it into an experimental computer control system can be far 

more challenging. This type of system is composed of a DC electrical power supply, a 

DC servo-motor and appropriate gearhead, a load/motion application mechanism, and a 

proprietary coding language to send commands to the motor. Load and position sensing 

abilities can be implemented and, unlike with pneumatics, this additional feedback can be 

used to provide improved control of the system because the function of the motor can be 

dictated based on position, speed and acceleration. As well, a motor and pulley 

configuration is not limited by a maximum stroke and thus can apply loads to any muscle 

group.      

1.6.1.2  Spatial Tracking Methods 

Spatial tracking is an integral component to in-vitro biomechanical investigations both as 

an outcome variable and process variable during testing. Tracking of the osseous 

structures and testing components – for instance, joint replacement components – can be 

achieved through a number of means including direct mechanical measurement, indirect 

medical imaging, and a variety of tracking technologies which use physical phenomena 

(i.e. sound, light, magnetic fields, accelerations, etc.) to record the poses of manually 

placed fiducial markers.  

The first tools to be used in biomechanical investigations were direct mechanical 

measurement tools, such as manual goniometers, which linked to two structures of 

interest, allowing the measurement of joint rotation in static poses. This progressed to the 

use of electrical resistance transducers which provided greater precision and reliability, 

and permitted motion, rather than static poses, to be recorded (Doody et al., 1970). These 

systems eventually became capable of measuring all six degrees of freedom between two 
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mechanically linked structures (Siegler, Lapointe, Nobilinit, & Berman, 1996) but were 

exceedingly complex and were likely to affect, rather than just measure, joint function. 

An additional limitation of these systems is the difficulty associated with precisely 

aligning the linkage with the desired anatomical axes. Failure to achieve this precise 

alignment would result in misleading rotational crosstalk between the three DOF and as 

such, the use of these mechanical linkages has decreased. 

Medical imaging, such as plane radiographs, fluoroscopy, radiostereometric analysis 

(RSA), 3D model based biplane x-ray, and magnetic resonance imaging can also be used 

to assess joint kinematics during biomechanical investigations. Plane radiography has 

been used for many years to assess the 2D translations and rotations of joints and, in some 

cases, to infer knowledge of the 3D pose (Poppen & Walker, 1976). Fluoroscopy has 

been used similarly but with the added advantage of allowing the assessment of motion. 

RSA has been used to increase the accuracy of both of these techniques through the 

placement of clearly defined radiopaque beads. More recently, 3D model-based (or 

beadless) biplane x-ray (Bey et al., 2006) and MRI (Graichen et al., 2000) techniques 

have allowed the assessment of 3D translation and rotations of a joint, but MRI is 

frequently limited by its low acquisition rate. Despite the accuracy and non-invasive 

nature of these last two techniques, the associated costs, size, and radiation exposure 

(during biplane x-ray, for the experimenter) have reduced their widespread application. 

Six DOF tracking technologies, which use specimen affixed markers that transmit or 

receive a signal from a central unit, have been develop using a number of concepts from 

physics. The common element in each of these systems is the use of three independent 

sensors rigid relative to one another which enable all six DOF to be calculated.  

Electromagnetic tracking is a widely used technique that uses a central transmitter and a 

set of receivers attached to relevant anatomy and testing components. By using these 

three measures for each of the three transmitter coils (nine total measurements) it is 

possible to determine the 3D position and orientation of the receivers. Electromagnetic 

systems can achieve accuracies of ±0.5mm and ±0.5° which are sufficient for use in most 

biomechanical investigations. Despite this level of accuracy, the use of these systems is 
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somewhat limited by their sensing range (2 meters) and the inability to use any metal in 

the design of the experiment.  

Optical tracking, which measures the position of optical markers using infrared light, is 

another widely used technique. Similar to electromagnetic tracking, optical tracking uses 

a central camera with multiple light sensors as well as a minimum of three markers on 

each bone that either act as light reflectors or sources. In one case, light is emitted from a 

central source and reflected by the bone markers, with the light sensors then recording the 

light reflected by each maker simultaneously. In the other, each bone marker emits light 

when signaled to do so, and the light sensors record simultaneously. In each of these 

scenarios, the accuracy of the recordings is heavily dependent on the ability of the 

recorded light in each camera to uniquely define each rigid body. When properly defined, 

the accuracy of these systems can reach as high as 0.1mm and 0.1°, which is the highest 

of any current tracking technique. Although this technology does permit the use of metal 

in the experimental protocol – which is particularly useful in the setting of orthopaedic 

research involving implants – the requirement for continuous line of sight in these 

systems can be limiting. Light emitting systems such as the Optotrak Certus (Northern 

Digital Inc., Waterloo, ON) are especially effective at overcoming this issue because the 

sequence of marker firing is predefined and thus redundant marker sets are permissible 

and do not require an asymmetric marker structure to be accurately tracked. 

More recently, the use of systems which combine the data provided by gyroscopes, 

accelerometers, and magnetometers to determine position and orientation of a body has 

become more prevalent. These systems, however, have a number of limitations in 

comparison to those discussed above. First, the determination of a body’s position is 

dependent on the double integration of accelerometer readings to obtain translations. 

Previous research has shown that error in these acceleration measurements rapidly leads 

to unreliable and inaccurate position values following integration (Giansanti, Macellari, 

Maccioni, & Cappozzo, 2003). Second, the readings from the magnetometers can 

experience interference from magnetic fields in the testing environment which will also 

affect accuracy. Third, orientation data which is produced through a combination of the 
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three discrete sensors currently has an accuracy of at best one order of magnitude poorer 

than the systems discussed above. As a result of these limitations, these systems are more 

commonly used in studies interested in general motion pathways and/or recording of 

motion for animation purposes and not in cases where measurement of precise joint 

mechanics are required.                  

1.6.1.3 Load Sensing 

In addition to tracking the motion of the joint, it is often important to monitor the 

externally applied loads and loads within the joint itself. The technique used to measure 

these loads depends heavily on the application at hand and the associated constraints, but 

these include pressure sensitive films, application specific custom strain gauge based load 

sensors, and commercially available load cells with varying DOF. For this thesis, the 

most relevant technique is the use of commercially available load cells and thus this is the 

only technology to be discussed below.  

Commercially available load cells are the most widely used tool for measuring applied 

and internal loads; they are produced in an array of sizes and designs, with varying load 

limits, and the capability of measuring one to six DOF. Single DOF – or uni-axial – load 

cells are frequently used in the measurement of applied muscle loads, and two DOF – or 

thrust-torque – load cells can measure the applied force and rotational moment applied to 

a limb. Six DOF load cells provide a full description of the loading environment and thus 

are the most useful in complex loading environments such as between the articulating 

surfaces of a joint; however, these sensors are typically larger than lower DOF systems 

and can be quite expensive. 

Unlike simpler load cells, six DOF sensors report their load measurements with respect to 

a well-defined coordinate system that typically coincides with the center of its ‘tool 

plate,’ and thus, can be replicated through the identification of landmarks on the load cell 

(Figure 1.11). With this coordinate system defined, it is possible to report the three 

components of force acting on the sensor relative to their respective axes, and to 

determine the moments acting on the sensor about each axis. Load data acquired using 
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this method are of great value, as they can be transformed into any physiologically 

meaningful coordinate system, thus increasing interpretability and decreasing the need to 

precisely position the load cell.    

1.6.2 The Processes of In-Vitro Biomechanical Research 

1.6.2.1 Coordinate Descriptions & Transformations 

A coordinate system is composed of three mutually orthogonal vectors of unit magnitude 

which allow the description of a body’s 3D position and orientation. These coordinate 

systems are classified either as global – typically permanently fixed –, or local – specific 

to the object and free to move. By using a combination of global and local coordinate 

systems, it is possible to describe any object’s coordinate system relative to another’s. 

These coordinate systems are constructed by selecting two vectors on the object of 

interest that are oriented in a useful/meaningful way, such as along a long axis or in an 

important plane. The cross product of these two vectors can then be calculated in order to 

determine a mutually orthogonal third vector. As the coordinate system must contain 

three mutual orthogonal vectors, only one of the two initial vectors can be retained. Once 

this choice is made, the chosen vector and the resultant of the cross product can be 

crossed to create a final vector. Normalization of these three vectors produces an 

orthonormal coordinate system which enables the description of the 3D relative 

displacements of an object; however, in order to define the object’s absolute position, it is 

necessary to define an origin. This origin is typically (0, 0, 0) for a global coordinate 

system but can be any arbitrary point. To simplify the description and transformation of 

an object’s motion, a matrix descriptor known as a Transformation Matrix is typically 

used (Equation 1.1A). This format allows the easy calculation of a point’s 3D location in 

space relative to the new coordinate system. In the case of a rigid body with a defined 

coordinate system, this format also allows the description of this rigid body’s 3D 

orientation with respect to the coordinate system using a rotation about each axis. A rigid 

body is fully defined in all six degrees of freedom when its 3D translational and 3D 

rotational descriptions are combined. Further, it is possible to multiply a chain of these  
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Figure 1.11: Six DOF load cell coordinate system. 
The coordinate system shown is coincident with the sensing system of the load cell and 
can be accurately reproduced using landmarks on the tool (top) plate. Shown is a Mini45 
(ATI-IA, Apex, NC) six DOF load cell which has a 45mm diameter and 15.7mm height.  
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matrices, transforming the description of an object’s six DOF pose from one coordinate 

system to another (Equation 1.1B). 
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 Eq. 1.1A 

𝑇𝐻𝑢𝑚𝐶𝑆
𝑆𝑐𝑎𝑝𝐶𝑆 =  𝑇𝑆𝑀𝑎𝑟𝑘𝑒𝑟

𝑆𝑐𝑎𝑝𝐶𝑆 ∗  𝑇𝐶𝑎𝑚𝑒𝑟𝑎
𝑆𝑀𝑎𝑟𝑘𝑒𝑟 ∗  𝑇𝐻𝑀𝑎𝑟𝑘𝑒𝑟

𝐶𝑎𝑚𝑒𝑟𝑎  ∗  𝑇𝐻𝑢𝑚𝐶𝑆
𝐻𝑀𝑎𝑟𝑘𝑒𝑟  Eq. 1.1B 

Equation 1.1: Transformation matrix definition and chain multiplication rule.  
(A) Middle term indicates column vectors which define transformation matrix where X, Y, 
Z are the axes of A projected onto the axes of B, and P is the position of A with respect to 
B. Right term shows individual elements of transformation where subscript x, y, z 
correspond to the axes in question. (B) Example of common use of chain rule to transform 
humeral and scapular coordinate systems known with respect to optical tracking markers, 
to be with respect to each other. Note that strikethroughs indicate cancellation of 
corresponding coordinate systems.  

1.6.2.2 Local Bone Coordinate Systems 

In order for the six DOF descriptors produced from coordinate transformations to be 

meaningful and useful in the context of biomechanical research, it is necessary to define 

Local Bone Fixed coordinate systems for all bones of interest (Figure 1.12). These 

coordinate systems are defined relative to a rigidly fixed tracking marker using the bone’s 

anatomy and/or functionality, and, once created, are constant irrespective of changes in 

time, position, or orientation of the bone. 

Bone fixed coordinate systems are created using the process outlined in the previous 

section, and the two initial vectors are obtained by measuring the location of at least three 

points of physiological importance. For many bones, form reflects function, and thus 

osseous landmarks can be chosen to define these vectors. The most common method for 

measuring these points is through point digitizations, where a calibrated pointer (or 

stylus) is used to localize an anatomical feature while a tracker records the location of the 

stylus tip relative to the bone affixed marker. When the point of interest is not easily 

identified on the bone (unlike, for instance, the apex of the epicondyles in the elbow), 

multiple points may be recorded, and their location data can be mathematically analyzed  
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Figure 1.12: Local Bone Fixed coordinate systems in the shoulder complex. 
A right shoulder is shown here illustrating the scapular and humeral coordinate systems 
used in this thesis. ‘Ant’, ‘Sup’, ‘Lat’ correspond to the anterior, superior, and lateral 
directions. Note that the red X-axes for both bones point posterior on a left shoulder.  
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to define a single point (for instance, a sequence of points with a circle fit algorithm can 

define a geometric center). 

Point digitizations are a simple and accurate method for creating bone fixed coordinate 

systems but in some joints, the structure of the osseous anatomy is not necessarily the 

optimal physiologic descriptor of joint motion. Instead, the most physiologically 

meaningful coordinate system is defined relative to a functional joint center (e.g. center of 

the hip or shoulder) or natural axis of rotation (e.g. long axis of the forearm). In these 

cases, the point or axis is defined by recording the motion of the marker fixed to the bone 

while it is moved through a set of physiologically meaningful motions. Various methods 

exist to analyse these data but the most common ones use the motion descriptor known as 

the Screw Displacement Axis (SDA). SDAs describe the instantaneous axis of rotation 

experienced by a body and thus, in a joint with a well-defined axis of motion, the average 

of a series of SDAs across a motion can be used to define the physiologic axis (Ferreira, 

King, & Johnson, 2011). Conversely, in joints with varying rotation axes but a common 

rotation center, the construction of a coordinate system can make use of the point where 

all SDAs are closest to intersecting (Woltring, 1990).       

1.6.2.3 Rotation Sequence Decomposition 

Through the use of bone fixed coordinate systems and coordinate transformations, it is 

possible to describe the orientation of one bone with respect to another using a nine 

element rotation matrix. This matrix is difficult to interpret in a precise physiological 

manner, so rotation sequence decomposition methods have been developed. The most 

widely used decomposition in biomechanics is the Euler angle sequence. Using this 

method, the 3D orientation of an object is defined using a rotation about each axis in a 

predefined order, and the calculation of each rotation is based on the preceding 

orientation of the object (Figure 1.13).  

Differing sequences of rotation about the three axes will yield different magnitudes of 

rotation for each axis and thus consistent standards are required in order to permit 

comparison of results between investigators. It is also important to choose a sequence  
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Figure 1.13: Y-X-Y Euler angle decomposition method. 
This figure demonstrates how Euler angles are used to describe orientation and how this 
description is sequence dependent. (A) Rotation about the coincident Y axes of the 
humeral and scapular coordinate systems; (B) rotation about the newly oriented humeral 
X axis; (C) rotation about the humeral Y axis following rotation about the new X axis; 
(D) final orientation of humeral coordinate system.   
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which results in the magnitude of rotation most consistent with the physiological case. In 

the case of scapulothoracic motion, Karduna, McClure, and Michener (2000) have shown 

that choice of rotation sequence can alter kinematics outcomes by as much as 50° and in 

some cases result in different directions of rotation (e.g. posterior rotation for one 

sequence and anterior for another). The most widely used sequence in biomechanics is 

rotation about Z→Y→X because it permits the description of a rotation about each axis, 

which corresponds well to the physical situation in the body. However, other sequences 

of the three axes are permissible, as are rotation sequences that incorporate rotation about 

the same axis in the first and third step of the process such as Y→X→Y. Sequences with 

repeated rotations are commonly used in joints with a large range of motion where 

rotation about one axis can produce motion of different physiologic meaning when an 

intermediate rotation occurs. For example, a Y→X→Y rotation sequence in the shoulder 

– where Y is rotation about the humerus’ long axis and X is rotation about the humerus’ 

anterior axis – is meaningful because the first Y rotation defines the plane in which the 

second rotation (abduction of the humerus) occurs, while the second Y rotation defines 

the humerus’ degree of axial rotation. 

A further consideration which influences the choice of sequence and use of a repeated 

sequence is the possibility of encountering “gimbal lock” – a special case whereby the 

first and third rotations become mathematically undefined as a result of the magnitude of 

the second rotation. In non-repeating rotation sequences this singularity occurs when the 

second rotation is equal to 90°. In this case, it is mathematically unclear as to whether the 

first or third rotation caused the calculated motion. In the case of a repeated sequence, this 

singularity occurs at 0° and 180° because these are the rotations in which the first and 

third axes align. Selection of an optimal sequence should therefore be based on pre-

existing biomechanical understanding of a joint’s function and the joint positions which 

are of clinical interest. Ideally, to avoid gimbal lock, a non-repeating sequence should be 

chosen in which the second rotation never reaches 90°. However, 90° of shoulder 

abduction is clinically meaningful, thus a repeating sequence is commonly used. 
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Unfortunately, this makes interpretation of results with the arm in 0° of abduction 

difficult. Grood and Suntay (1983) proposed a method to decompose joint rotations while 

avoiding gimbal lock. Amadi and Bull (2010) adapted this method for use in the shoulder; 

however, this has not been used experimentally. In this method, basic knowledge about 

the primary rotation being analyzed enables the rotations to be determined using a 

stepwise decomposition method. 

1.7 In-Vitro Shoulder Simulators 

Dowson and Jobbins (1988) defined a simulator as “any device or system that simulates 

specific conditions or the characteristics of a real process for the purpose of research or 

operator training” (p.111). Applied to in-vitro biomechanical research, a simulator is a 

system which replicates the physiologic conditions, such as loading and motion, 

experienced by a joint complex and the environment it functions in. Previous 

investigators have employed in-vitro simulators using full cadaveric shoulder specimens 

as a means to increase the efficacy and accuracy of their biomechanical research; 

however, their level of accuracy and the types of testing employed have varied widely. 

These simulators can be classified as (1) static, or (2) ‘dynamic’1, where dynamic can be 

sub-classified into passive or active motion simulators. The majority of research has 

focused on the assessment of static biomechanical outcomes, and passive, investigator 

driven functional assessments. A far smaller group of simulators have addressed the 

replication of in-vivo active muscle driven motion. Each of these methods represents an 

important opportunity for broadening our understanding of basic shoulder biomechanics 

and the biomechanics of clinically relevant questions related to orthopaedic injury, 

dysfunction, and reconstruction. 

1 where this simply denotes motion and not the traditional definition of ‘dynamic’ 
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1.7.1 Static Shoulder Simulators 

The purpose of a static joint simulator is to replicate the conditions of a joint in one 

discrete joint configuration. As a result, these systems cannot assess how outcomes 

change as the joint configuration changes, but are well suited to describing discrete 

biomechanical variables which exist at a given joint pose such as muscle lines of action or 

moment arms. These systems have been widely used in shoulder research (Ackland et al., 

2008; Alexander et al., 2013; Karduna et al., 1996; Kelkar et al., 2001; L. J. Soslowsky et 

al., 1992) and typically employ loading of appropriate muscle groups or direct loading of 

the bones in order to articulate the joint.  

1.7.2 Dynamic Shoulder Simulators 

Dynamic simulators differ from static simulators in that they seek to replicate the motion 

of the joint in addition to its loading and environmental conditions. Thus, these simulators 

are capable of evaluating outcome variables continuously across a given motion. Previous 

simulators have replicated this motion both passively and actively as outlined below. 

1.7.2.1 Passive Shoulder Motion Simulators  

Passive simulation of the shoulder involves the assessment of the joint’s motion and 

function through a series of tests performed by the investigator. These tests are carried out 

using a minimally dissected shoulder joint complex on a simulator designed to replicate a 

predefined set of environmental conditions drawn from the in-vivo state. Passive 

assessments commonly involve the evaluation of the joint’s ranges of motion, articular 

contact mechanics, and stability. Although not as physiologically accurate as the active 

motion simulation discussed in the following section, passive simulation is a very 

important part of fully assessing the shoulder as it enables investigators to perform tests 

similar to those used clinically in the evaluation of this joint. 

Passive in-vitro shoulder simulators expanded beyond simple bench top studies in the 

early 1990s when investigators instrumented shoulder specimens with motion tracking 
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and load cell hardware (Harryman et al., 1990; Itoi, Motzkin, Morrey, & An, 1994) which 

permitted the recording of loads and joint kinematics during passive motion. These early 

devices, however, relied entirely on the experimenter’s ability to consistently manipulate 

the humerus relative to the scapula and thus resulted in large variability in their results. 

The following years saw the emergence of systems that enabled greater control over the 

load applied to individual degrees of freedom during the monitoring of joint translations 

(Warner, Deng, Warren, & Torzilli, 1992); however, these did not accurately model 

physiologic bone configurations and did not dynamically load the muscles of the shoulder 

complex. Further developments by Itoi et al. (1994) resulted in a simulator capable of 

properly orienting the constituent bones of the shoulder relative to gravity while also 

loading relevant rotator cuff muscle groups in physiologic patterns. More recently, these 

types of systems have allowed an increasing number of muscle groups to be loaded  and a 

greater range of outcome variables to be assessed (Ackland & Pandy, 2011; D. C. 

Ackland et al., 2008; Alexander et al., 2013; Yu, McGarry, Lee, Duong, & Lee, 2005). 

Subsequently, other groups began to acquire the ability to perform objective assessments 

of joint motion by recording loads while pneumatic and robotic systems moved the 

shoulder through predefined motion pathways (Debski, Wong, Woo, Sakane, Fu, & 

Warner, 1999a; McMahon et al., 2003). Despite the widespread development and use of 

these simulators, no one simulator has been developed which possesses all of the key 

design features required to improve the accuracy of the replicated environment (i.e. 

simulated muscle loading, scapular motion, etc…) and permit objective evaluations of 

physiologically meaningful outcome variables (i.e. develop a mechanism to permit 

isolation of individual DOF, implement a continuous tracking system, etc…).   

1.7.2.2 Active Shoulder Motion Simulators  

Although passive shoulder motion simulators can provide important information 

regarding joint function and stability, the external validity of these results are limited 

because the motions are not driven by muscle loading as is the case in-vivo. Therefore, a 

number of groups have focused on the development of active motion simulators which 

rely entirely on muscle loading to produce glenohumeral motion. Kedgley et al. (2007) 
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have additionally shown that the implementation of a simulator which uses continually 

variable muscle forces to drive shoulder motion can produce motions with higher 

repeatability than those performed passively. This higher repeatability in turn increases 

the statistical power of the findings and their physiologic validity, because the kinetics of 

the joint are more closely replicated.  

Active motion can be produced through one of three control methods: (1) muscle load 

control, (2) position control, (3) computational model driven muscle loading. Muscle load 

control has been the most widely implemented technique, whereby the muscle primarily 

responsible for the motion of interest, termed the ‘prime mover,’ is used to define a set of 

muscle loading ratios. Despite its widespread use, muscle load control is of limited value 

as it has difficulty producing slow, smooth, and repeatable motion (Dunning et al., 2001). 

Position control has the potential to produce much more repeatable motion than load 

control, but traditionally has produced loads that are less representative of the true in-vivo 

loading environment (Dunning et al., 2001). At the time of writing, there are no reports in 

the literature of the third method being implemented in a manner which can produce 

smooth motion. This may relate to the computational complexity of implementing a 

system that can use a computational model while also adjusting appropriately given real 

time feedback.  

Cain et al. and Soslowsky et al. were the first to develop active simulators; however, they 

used these to place the joint in discrete positions and record outcomes rather than produce 

continuous motions (Cain, Mutschler, Fu, & Lee, 1987; L. Soslowsky et al., 1992). 

Debski et al. (1995) and Wuelker et al. (1994) concurrently developed the first simulators 

capable of achieving dynamic joint motions by using an open loop muscle load controller  

in which the muscle length of the ‘prime mover’ was shortened at a constant rate, and the 

secondary muscle loads were apportioned based on this muscle’s measured load. These 

systems, however, did not adjust scapular orientation, attempt to maintain a constant 

rotational velocity, or, in the case of Desbki et al., use physiologic muscle loading ratios, 

all of which affected the accuracy and repeatability of the reported kinematic outcomes 

relative to the in-vivo condition. Other simulators have used physiologically accurate 
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muscle loading ratios but have continued to depend on a constant prime mover velocity to 

achieve repeatable motions (Halder, Zhao et al., 2001; Halder et al., 2001; Malicky, 

Soslowsky, Blasier, & Shyr, 1996; McMahon et al., 1995).  

Muscle loading ratios were initially chosen as constant values across an entire motion, 

thus neglecting variations observed in in-vivo electromyographic (EMG) studies; 

however, Kedgley et al. (2007) demonstrated that the use of continuously varying loading 

ratios produces a more physiologically accurate loading model. Despite these 

developments, these simulators continue to depend on muscle loading ratios drawn from 

the literature and as a result, the ability of these systems to control all three rotational 

DOF of the shoulder is limited, since population average ratios are unlikely to produce 

exactly the desired motion in any given specimen. As well, the data used to construct 

muscle loading ratios is limited to a very small set of motions which have been 

investigated in-vivo and thus these systems are somewhat limited to simulating these 

motions. There remains to be a simulator described in the literature which uses motion 

control through real time kinematic feedback to achieve improved repeatability and 

control of all three of the shoulder’s rotations.  

1.8 Rationale 

In-vitro experimentation is a critical tool in increasing our understanding of shoulder 

kinematics, function, and stability in healthy and dysfunctional joint conditions. 

Additionally, this testing can elucidate the effects of various treatment options prior to 

their application in patients. Moreover, while in-vivo investigations cannot directly 

compare different joint conditions and repair techniques within individual subjects, and 

thus require the recruitment of large patient populations, in-vitro investigations have the 

statistical advantage of using within subject methods of comparison of joint conditions. 

Simulators that use complete shoulder complexes are the most efficacious tools for 

performing in-vitro assessments; however, to date, the development of these simulators 

has lagged behind those of other joints, especially in the area of active motion simulation. 

Thus, our understanding of shoulder biomechanics and the effects of various 
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repairs/reconstructions and implant designs remains limited, and in some cases potentially 

incorrect.  

Our understanding of the biomechanics of shoulder function, stability and kinematics can 

be improved through the use of static, passive and active simulators; however, each of 

these types of systems remains underdeveloped in their own way. The ability to 

concurrently assess these biomechanical variables using a system capable of all three 

types of simulation would greatly enhance the power and interpretability of the findings 

by producing complementary data sets. As well, by combining these testing methods 

within one system, it will be possible to understand and weigh a joint condition’s effects 

on the shoulder’s overall biomechanics. Developments in each of these simulation areas 

are presented in this work. 

1.9 Objectives and Hypotheses 

The overall goal of this dissertation was to develop a shoulder simulator capable of static, 

passive, and active simulation and to investigate areas of basic biomechanical interest and 

clinically relevant questions.  

Specific Objectives:   

1. To further develop an existing in-vitro shoulder simulator such that it could:  

a. Accurately replicate the scapular rotations observed in-vivo that are most 

relevant to proper shoulder function and stability. 

b. Load the traditionally simulated muscle groups along physiologically 

accurate lines of action while accounting for scapular motion produced by 

developments in Objective 1a. 

c. Accurately load the multi-articular short and long heads of the biceps. 

2. To develop a static/passive glenohumeral joint positioning and constraint 

mechanism that allows the joint to be repeatably positioned throughout its range 

of motion, and locked globally while leaving the articular kinematics unaffected. 

This mechanism must also enable individual DOF to be manipulated. As well, to 
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develop a load sensing device for the objective quantification of passive outcome 

variables of interest such as range of motion. 

3. To assess the static and passive effects of the short head of the biceps and 

coracobrachialis on shoulder biomechanics. 

4. To compare the static and passive effects of two competing coracoid transfer 

reconstructions used to treat anterior glenoid bone loss.  

5. To develop a motion based controller that would allow the production of 

unconstrained active glenohumeral rotation entirely through muscle loading, and 

that could effectively control all three rotational DOF. 

6. To assess the static, passive, and active biomechanics of the reverse total shoulder 

replacement across a range of component configurations encompassing both 

commercially available and previously unstudied implant arrangements.     

Hypotheses: 

1. The simulator will allow the repeatable assessment of static and passive shoulder 

biomechanics. 

2. The simulator will enable clarification of the biomechanical role of elements of 

shoulder anatomy on joint stabilization and passive motion. 

3. The simulator will enable the assessment of the effects of clinical disorders and 

treatment options on joint stabilization and passive motion.  

4. The simulator, when equipped with the new motion based controller, will increase 

the repeatability of experimental simulations of glenohumeral motion in 

comparison to previous simulators, and will also provide control over the two 

rotational DOF not involved in the primary simulated motion. 

5. The static, passive, and active in-vitro simulation capabilities of the simulator will 

enable a previously unexplored range of outcome variables to be assessed in order 

to provide more complete evaluations of biomechanical and clinical questions 
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1.10  Thesis Overview 

Chapter 2 describes the development of the static and passive in-vitro simulator as 

described in Objectives 1 and 2 of Section 1.9. Chapter 3 describes the application of 

these developments to evaluate the basic biomechanical effect of the short head of the 

biceps on shoulder function. Chapter 4 addresses a clinical question of current interest in 

the orthopaedic community by comparing two competing coracoid transfer procedures on 

the basis of their static and passive effects on the shoulder. Chapter 5 describes the 

development and validation of the active motion functionality outlined in Objective 5 of 

Section 1.9. Chapter 6 describes how this new control system was used, along with the 

developments in the previous chapters, to assess a novel set of reverse total shoulder 

implant configurations. Chapter 7 provides a discussion of this dissertation’s work, and 

provides conclusions and future directions for this research. 
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CHAPTER 2 – Development, Augmentation, 
and Validation of a Static and Passive 
Glenohumeral-Scapulothoracic Shoulder 
Simulator 

2 - 
OVERVIEW 

Static and passive in-vitro simulation is an important tool in characterizing the 

ranges of motion and function of the shoulder joint complex. Previous simulators 

have assessed these outcomes but each has had limitations that have affected their 

ability to perform objective assessments based on quantifiable criteria, assess 

outcomes in multiple joint positions, or replicate physiologically accurate 

conditions. This chapter describes the design and validation of a series of 

apparatuses that address these areas. These apparatuses are: a humeral 

positioning apparatus to improve the accuracy and repeatability of positioning the 

humerus by decomposing the glenohumeral joint’s three rotational DOF; a scapula 

rotation mechanism to maintain the proper osseous relationship with the humerus 

throughout its range of motion; a muscle loading and cable guide system to 

improve load transmission to the muscles and the physiologic accuracy of the 

replicated lines-of-action; and a instrumented humeral rod with integrated load 

sensing and spatial tracking capabilities to aid in the objective assessment of 

biomechanical outcome variables. The results indicated that joint positioning with 

the humeral guide was significantly more accurate than unaided positioning 

(p<0.008). The muscle loading system produced total losses of no greater than 3.8 

N and the instrumented humeral rod allowed for accurate functional assessments.  

Therefore, these systems are likely to improve the validity of biomechanical and 

clinical assessments performed on this simulator and thus the value of the results 

obtained. 
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2.1 Introduction 
The shoulder possesses the largest range of motion of any joint in the body due, in part, to 

its largely unconstrained structure. This trade-off between greater motion and decreased 

constraint predisposes the shoulder to various forms of instability and dysfunction. As a 

result, when testing various joint conditions using an in-vitro simulator, it is important not 

only to assess how the shoulder moves, but also how differing joint conditions influence 

its range of motion and stability in various joint positions. These assessments take the 

form of static or passive motion evaluations of the joint’s function in various, clinically 

relevant positions. However, in order to obtain experimentally valid data, it is necessary 

to assess these outcomes in repeatable, objective, and quantifiable ways. This requires the 

development of a static-passive simulator that can repeatably orient the joint, isolate 

individual DOF of interest, and permit outcomes to be quantified using objective end 

points. 

Past investigators have developed static-passive shoulder simulators to enable the 

evaluation of range of motion and joint stability (Ackland, Pak, Richardson, & Pandy, 

2008; Harryman et al., 1990; Huffman et al., 2006; Itoi, Motzkin, Morrey, & An, 1994; 

Warner, Deng, Warren, & Torzilli, 1992); however, each of these systems have been 

limited in their ability to perform objective assessments based on quantifiable criteria, 

assess outcomes in multiple joint positions, or replicate physiologically accurate 

conditions. Harryman et al. (1990) were the first to develop a passive whole joint 

shoulder simulator that could record continuous kinematic and kinetic data, but this 

system relied on unguided investigator manipulation of the humerus and thus the 

repeatability and objectivity of the outcomes was limited. Itoi et al. (1994) and Warner et 

al. (1992) developed systems with greater abilities to objectively assess and quantify 

outcome variables of interest; however, neither apparatus simulated muscle loading, thus 

decreasing the physiological accuracy of the experimental model, and limiting the clinical 

relevance of the findings. Lee and colleagues have more recently developed a simulator 

that loads both glenohumeral and humerothoracic muscles and that has the ability to 

perform objective assessments with quantitative outcomes (Yu, McGarry, Lee, Duong, & 
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Lee, 2005); unfortunately, this system is limited to testing with the arm in 90° of 

abduction which prevents the full characterization a joint condition’s effect on should 

motion and function. Finally, Ackland and Pandy have designed a simulator that is 

advanced in its ability to replicate physiologic loading and osseous configurations across 

a range of joint positions, but they have not implemented a means to objectively define 

the end point of outcomes, such as range of motion (Ackland et al., 2008). Instead, their 

simulator focuses on the assessment of intrinsic joint parameters, such as moment arms, 

in predefined joint configurations. Each of these simulators has advanced the field of in-

vitro shoulder static-passive experimentation; however, none of these simulators 

possesses all of the design features required to improve the accuracy of the replicated 

environment and to permit objective evaluations of physiologically meaningful outcome 

variables.   

Therefore, the purpose of this work was to develop a novel simulator that can accurately 

and repeatably orient both the scapula and the humerus while also allowing individual 

DOF of the glenohumeral joint to be manipulated. Additionally, a mechanism was 

developed that would allow physiologically accurate muscle loads to be applied with the 

joint in any configuration. Finally, a device with integrated capabilities for load sensing 

and spatial tracking was developed to enable the objective, quantifiable assessment of 

functional shoulder outcomes, such as joint stability and range of motion. It was 

hypothesized that implementation of these mechanisms would improve the accuracy and 

repeatability in performing tests and achieving predefined end points when compared to 

an experimenter acting alone. Additionally, it was hypothesized that while the devices 

would aid in the repeatability of orienting the specimen, they would not unduly constrain 

joint articular kinematics. 
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2.2 Methods 
The following sections will outline the design, development and validation of the 

components required to achieve the goals outlined above. 

2.2.1 Design Requirements & Constraints 

The design was guided by a number of requirements and constraints. The requirements 

were: (1) all components must be able to interface with the lab’s existing first generation, 

load driven shoulder active motion simulator as described by Kedgley et al. (2007); (2) 

the humeral positioning apparatus must be able to mate to a shoulder specimen that is 

transected at mid-humerus, and to accurately and repeatably orient it throughout a 

clinically meaningful range of motion (~130° of abduction); (3) the humeral positioning 

apparatus must also be able to independently control/constrain each rotational shoulder 

DOF in a way that corresponds to clinical descriptions of shoulder motion, thus 

facilitating the replication of clinical assessments; (4) the scapular rotation apparatus must 

allow a scapula to be potted in a physiologic orientation and produce rotations in rhythm 

with the humerus; (5) an augmented cable guide system must ensure that physiologic 

muscle lines-of-action are maintained irrespective of scapular orientation; (6) the design 

of the load sensing and spatial tracking device must permit it to interface with the 

humerus and humeral positioning apparatus while providing real time data to be used as 

objective endpoints. 

The primary constraints in this design process were: (1) the design of the humeral 

positioning system and its method for mating to the specimen must not rigidly fix the 

glenohumeral joint or otherwise influence its articular kinematics (i.e. translations); and 

(2) the design of the scapular rotation mechanism could not alter glenohumeral 

kinematics. 

2.2.2 Humeral Positioning Apparatus 

In designing the humeral positioning apparatus, a number of options were considered. 

Debski et al. (1999) designed an industrial robot based system, and Walker and Dickey 
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(2007) designed a custom hexapod robot system for spinal testing; however, neither type 

of system can decompose the glenohumeral joint’s motion into interpretable DOF during 

testing, and both would unduly complicate the replication of clinical assessments. 

Additionally, the hexapod concept could not accommodate the full range of motion of the 

shoulder. 

With these options eliminated, a mechanical rather than mechatronic concept was 

pursued. Therefore, in order to satisfy the requirement of decomposing the shoulder’s 

motion into individual DOF, an apparatus with three distinct mechanisms (Figure 2.1) 

was developed to isolate each of the three rotations: axial rotation, abduction, and plane 

of abduction. The axial rotation DOF of the glenohumeral joint was isolated by 

implementing a mechanism which could mate to an intramedullary humeral rod – used in 

the previous version of the simulator (Kedgley, 2004) – and permit rotation about its long 

axis, which is coincident with the humeral axial rotation axis. A spherical bearing was 

selected for this component as it permitted axial rotation of the rod within the bearing and 

of the bearing within its casing (Figure 2.2). This bearing was also selected because it 

allowed the humeral rod to slide through it and incorporated two additional rotational 

DOF. Combining these three DOF at the rod-bearing interface enabled the humeral head 

– at the opposite end of the humeral rod – to freely translate in all three directions, and 

thus prevented the humeral positioning apparatus from having an undesirable influence 

on glenohumeral kinematics. This is particularly important in the event that a 

misalignment is present between the shoulder specimen and the apparatus as discussed 

below. 

A mechanism to control the abduction DOF was then designed by connecting the 

spherical bearing to a slider mechanism that moved along a hemispherical arc connected 

to the existing simulator base (Figure 2.3). The slider mechanism was designed to allow 

the center of the spherical bearing to reach full adduction (axis of the bearing directed 

vertically) while also enabling it to move to a position which would simulate 130° of 

humeral abduction (Figure 2.4). The slider was also designed with a clamping mechanism   
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Figure 2.1: The humeral guide arc.  
Note the slider mechanism with attached spherical bearing positioned for 90° of 
humerothoracic abduction. In the bottom left image, also note the dashed line indicating 
the vertical hinge which controls the plane of abduction. (A) Spherical bearing, (B) slider 
mechanism, (C) humeral abduction guide arc, (D) vertical hinge for plane of elevation 
control.  
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Figure 2.2: Spherical bearing used to mate humeral rod to guide arc.  
The degrees of freedom permitted by the bearing are (A) axial translation, (B) axial 
rotation, (C) two transverse rotations. 
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to enable the slider, bearing, and humerus to be locked at any level of abduction without 

influencing/constraining glenohumeral articular kinematics.  

The final rotational DOF of the shoulder, plane of elevation, was also controlled through 

the slider and arc mechanisms by connecting the arc to the simulator base using a vertical 

hinge construct instead of a rigid connection. The design of the hinge mechanism enabled 

the humerus to be rotated by greater than 130° anterior and 45° posterior to the scapular 

plane, thus enabling the entire range of glenohumeral horizontal flexion-extension to be 

assessed (Figure 2.5) (Itoi, Morrey, & An, 2009). Therefore, in the same way that the 

Euler angle sequence for the glenohumeral joint defines the plane of elevation, and then 

abduction occurs about an axis perpendicular to that plane, rotation of the arc about the 

vertical hinge defines the abduction plane, and the level of abduction is defined by the 

slider’s position. This hinge mechanism was also designed to lock in place once the 

correct plane was achieved, or be left free to vary depending on the assessment being 

performed. To ensure the center of the glenohumeral joint could be properly aligned with 

the vertical hinge, the components which mate the arc to the base were designed so that 

the axis of the hinge lay at a distance off the simulator base that was approximately equal 

to half the distance between the posterior acromion and the anterior coracoid.  

Additionally, as discussed above, the spherical bearing permits three DOF between the 

humeral guide arc apparatus and the intramedullary humeral rod, thus mitigating any 

effects of misalignment of the vertical hinge. 

Each of these mechanisms serves two roles, first to aid in the accurate orienting of the 

joint in its associated DOF, and second to physically resist motion in that DOF once the 

experimenter has specified its desired value. By combining the effect of these three 

components, it is possible to position the glenohumeral joint in any configuration while 

also allowing any individual rotational DOF to vary independently. Thus, this design 

enables the assessment of any conceivable position or motion and allows these 

assessments to be carried out in a clinically interpretable manner because the DOF of the 

apparatus coincide with the shoulder’s physiologic rotations. 
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Figure 2.3: Humeral guide arc mounted to existing simulator base 
(A) Existing simulator base, (B) hinged connecting plates to mate the guide arc to 
existing simulator. The coloured lines: (red) the internal-external rotation DOF 
controlled by the bearing, (green) the abduction DOF controlled by the slider, and (blue) 
the plane of elevation DOF by the vertical hinge plates. 
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Figure 2.4: Simulator with humeral guide arc and scapular potting and rotation mechanism 
In the left image, the two mechanisms are oriented for 0° of abduction while the right image shows them in their maximal abduction 
orientation which produces a 2:1 glenohumeral-to-scapulothoracic rhythm. 

 



www.manaraa.com

  

 
 

 

 
Figure 2.5: The humeral guide arc viewed from above 
The range of horizontal flexion-extension permitted by the apparatus is shown. Top, maximal horizontal extension position; middle, 
position corresponding to humerus in scapular plane; bottom, maximal horizontal flexion position.  

 

 



www.manaraa.com

78 

2.2.3 Scapular Rotation Apparatus 

The scapular rotation apparatus was designed to fulfill two objectives: (1) replicate the 

orientation of the scapula relative to the rotation of the humerus; and (2) facilitate proper 

alignment between the glenohumeral joint center and the center of the arc positioning 

apparatus describe in Section 2.2.2. During the development of this apparatus, the 

relevance and importance of each rotational DOF of the scapula was evaluated with 

respect to its effect on glenohumeral function, stability, and kinematics. From these 

evaluations, it was clear that scapular elevation played a critical role in stabilizing the 

glenohumeral joint during abduction by supporting the weight of the arm. Similarly, 

scapular anterior-posterior tilting influenced the stability of the humeral head by dictating 

which portion of the inferior glenoid would resist inferior subluxation. Protraction-

retraction, on the other hand, was considered to be of minimal importance, as this rotation 

occurred about an axis coincident with the gravity vector (i.e. a vertical axis), and thus 

changes in its value did not alter the portion of the glenoid which supported the humerus. 

Therefore, if changes in protraction-retraction were required, they could be simulated by 

altering the glenohumeral plane of elevation using the humeral positioning apparatus. 

Although scapular tilting was determined to influence joint stability, this rotation was 

omitted in this design process because there is currently no agreed upon description in the 

literature of how this rotation changes during glenohumeral motion. Conversely, scapular 

elevation has been well described and thus the design of the scapular rotation apparatus 

focused on replicating this motion. 

Since the humeral positioning apparatus was specifically designed to ensure that its 

mechanical center of rotation could be aligned with the glenohumeral joint center, it was 

critical that the scapular rotation apparatus did not move the joint center out of alignment 

when the scapula was rotated. To meet this requirement, the scapular rotation mechanism 

was composed of an adjustable scapula pot and a baseplate that rotated about a lockable 

horizontal hinge connected to the existing simulator (Figure 2.6). When mounted to the 

existing simulator, the axis of rotation of the hinge was designed to intersect the center of 

the humeral positioning arc. Once the scapula was potted in rough alignment with the 
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hinge, it was possible to use the two translational and one rotational degree of 

adjustability of the scapula pot to fine tune the position of the glenohumeral joint center. 

The rotational mechanism was designed to allow scapular orientations from neutral to 

>60° elevation, which would more than cover the scapular rotation required to achieve 

the desired maximum humerothoracic rotation of 130° when using the 2:1 glenohumeral-

to-scpaulothoracic rhythm commonly described in the literature (Inman & Abbott, 1944) 

(Figure 2.4). 

2.2.4 Muscle Loading & Guide System 

The implementation of a muscle loading and guide system is critical to the 

physiologically accurate replication of the in-vivo loading environment during in-vitro 

simulation. The primary factors in the design of an effective system are the minimization 

of load losses in the system, and the accurate replication of the muscle lines-of-action. 

The existing simulator was equipped with a muscle loading and guide system that loaded 

three rotator cuff muscles and three deltoid heads using cables routed through a custom 

guide system, with each cable connecting to an independently controlled pneumatic 

actuator. Despite the successful use of the existing system, a number of changes were 

required to accommodate the added functionality described above and to improve the 

system’s overall performance.  

To reduce the magnitude of losses incurred by the guide system for each muscle, a 

number of modifications were made to the existing system. This system used traditional 

pneumatic cylinders whose pistons were fitted with rubber o-rings. These pistons, 

however, incurred up to 6 N of static frictional loss, which was deemed excessive in the 

case of static/passive testing where the commanded load may be as low as 7.5 N. 

Therefore, air-bearing style cylinders – which use a borosilicate glass cylinder and 

graphite piston machined to extremely tight tolerances – were used to improve the 

system’s performance, since they permit a small amount of air leakage but produce  

 

 



www.manaraa.com

80 

 

 
 
Figure 2.6: The scapular potting and rotation mechanism 
Note the horizontal hinge that the pot rotates about, the scapula pot with 3 DOF of 
adjustability, and the muscle cable guides. (A) Scapular rotation base plate, (B) scapular 
elevation hinge, (C) adjustable scapula pot, (D) deltoid guides, (E) rotator cuff guides. 
Note that black arrows indicate the three DOF that the scapula pot can be moved in. 
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frictional loses of less than 0.1 N and eliminate stiction2 (Airpel Anti-Stiction Air 

Cylinders, Airpot Co., Norwalk, CT). Additionally, the previous cabling system, which 

relied on a complex set of guides with moving components and bushings, was replaced 

with a fixed construct design that provided predictable frictional losses for any entrance 

and exit cable angle. This guide was composed of an ultra-low friction Silicon Carbide 

ring-shaped fishing rod guide (Fuji Fishing Tackle, Ballina, New South Wales, AU) 

paired with a manufacturer recommended low friction braided Spectra line (PowerPro 

Super 8 Slick, Shimano Inc., Peterborough, ON) (Figure 2.7). 

For each muscle group, we ensured that: (1) the guide placement facilitated minimization 

of actuator load losses; and (2) the final cable direction, when routing the cable to the 

muscle, was coincident with the physiologic line-of-action (Figure 2.8). Despite the low 

friction design of the pneumatic cylinders used in this system, significant losses would 

occur if the cylinder experienced off-axis loading. Therefore, a guide was placed collinear 

to the piston of each cylinder, just beyond the maximum stroke, in order to ensure any 

off-axis loading was carried by the guide and not the cylinder.  

As a result of the addition of scapular rotation as described in Section 2.2.3, the routing of 

each cable to its respective muscle was significantly altered in comparison to the design 

for the existing simulator. Similar to the existing system, a mounting system was 

designed for each guide, which allowed its position to be translated in two directions in 

order to account for specimen-to-specimen variation in muscle lines-of-action. However, 

unlike the previous system, each guide was fixated to the scapula rotation mechanism 

rather than the simulator base so that the line-of-action was maintained in any testing 

configuration.  

This design resulted in the use of two guides for each muscle group: one on the scapula 

rotation mechanism, and another on the simulator base, meant to align the cable to the 

actuator. In the case of the three deltoid heads, however, it was found that the physiologic  

2 Stiction -   the frictional force to be overcome to set one object in motion when it is in contact with 
another.  In air cylinders, it is the phenomenon which causes inconsistent break away loads at the start of a 
cylinders stroke. 
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Figure 2.7: The two muscle cable guides. 

Top, cable guides used for all muscle groups; bottom, acromion and clavicle affixed 
deltoid cable guides. Note that in bottom image, anterior deltoid guide is placed on 
coracoid rather than clavicle as saw bones model in image did not include the clavicle.    
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Figure 2.8: The entire shoulder simulator with specimen mounted.  
Note that soft tissues of specimen are omitted for clarity.
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line-of-action could not be accurately replicated using these two guides because the 

muscles’ origins are located at the very lateral edge of the acromion. Therefore, a custom 

set of bone affixed guides was created for the three heads of the deltoid that were placed 

on the lateral acromion and the clavicle. These guides were composed of a polished brass 

double sided funnel, in the shape of the center of a torus3, which was secured to the bone 

using a plastic clamp and two cortical bone screws (Figure 2.7). Use of these guides 

improved replication of the deltoid lines-of-action but were used in combination with the 

existing guides in order to ensure the deltoid cables were not obstructed by the medial 

scapula in any rotational configuration. 

2.2.5 Multi-Articular Muscle Loading 
Loading multi-articular muscles presents a unique challenge in whole joint simulation, 

since the experimenter often does not have access to both the insertion and origin of the 

muscles. In the shoulder, the short and long heads of the biceps muscle run from the 

scapula to the bones of the forearm; however, the forearm is not present during testing 

and thus load application from a proximal cable onto the insertion site is not possible. The 

proximal origin must therefore be loaded from a distal location; however, this is difficult 

due to the limited space available, and because the humerus is not fully constrained 

during testing. As a result of these obstacles, and the relative lack of importance of these 

muscles during active shoulder motion, loading of these muscles had not been 

implemented on the existing active motion simulator. These muscles do, however, 

influence the motion and stability outcomes assessed by a static/passive simulator, and 

thus design of a method to simulate these muscles was undertaken as part of this research.   

Previous static/passive simulators have simulated loading of these muscles by simply 

hanging weights from a cable that is connected to the muscle and routed in a physiologic 

manner (Itoi, Kuechle, Morrey, & An, 1993; Lin et al., 2013). However, depending on the 

specific design, the use of weights may either apply unrealistic inferior subluxation forces 

3 Torus-a surface or solid formed by rotating a closed curve, esp. a circle, around a line that lies in the same 
plane but does not intersect it (e.g., like a ring-shaped doughnut). 
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to the glenohumeral joint or, if routed to a separate structure, may restrict the passive 

assessments which can be performed. To avoid these limitations, a miniature pneumatic 

actuator system (5/16” bore, Original Line, Bimba Manufacturing Co., University Park, 

IL) was implemented to independently load each of the two muscle groups (Figure 2.9). 

By mounting the actuators to the intramedullary humeral rod, the force of each actuator 

was internal to the humerus and glenohumeral joint. The cable between the actuator and 

the muscle was then routed using a bone affixed eyelet screw in order to achieve a 

physiologically accurate line-of-action. This configuration thus allowed any load level to 

be applied without applying the external loads associated with hanging masses that 

negatively affecting joint kinematics.  

2.2.6 Integrated Load Sensing and Spatial Tracking Device 

An integrated load sensing and spatial tracking device was designed with the goal of 

continuously quantifying various static and passive outcome variables, while also 

providing the experimenter with a means to set objective end point criteria for these 

variables. The device was attached to the humerus, because the majority of outcome 

variables of interest to a static/passive simulator involve some form of experimenter 

manipulation of the humerus. With this in mind, the existing intramedullary humeral rod 

was redesigned to accommodate a commercially available load cell and an array of 

optical trackers, while also permitting the rod to properly mate to the humeral guide arc 

(Figure 2.9). A six DOF load cell (Mini 45, ATI – Industrial Automation, Apex, NC) was 

selected for use in this device and was interposed between the two halves of a custom  

designed stainless steel humeral rod, thus permitting any test to be performed while fully 

describing the applied loading. The proximal half of the humeral rod consisted of a disk 

machined with a bolt pattern matching that of the tool side of the Mini 45 load cell and 

with a 4” long, ¼” diameter rod attached, to permit insertion into the humeral canal while 

leaving sufficient space for an appropriate cement mantle. The distal half had a similar 

disk and matching bolt pattern, along with a 5” long, ½” diameter rod machined to a 

polished finish, in order to facilitate smooth motion with the spherical bearing on the 

humeral guide arc. 
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Figure 2.9: The instrumented intramedullary humeral rod.  
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In order to ensure that the humerus could be tracked throughout its full range of motion, a 

custom optical tracking rigid body was created, composed of two standard Optotrak 

Certus rigid body markers – each with three infrared LEDs – mounted perpendicular to 

each other (Figure 2.9). The most difficult humeral motion to track is internal-external 

rotation; however, the geometry of this rigid body allowed it to be tracked over a total arc 

of 210°, which far exceeds the physiologic range of motion. This custom rigid body was 

defined so that any three of the six LEDs could be used to track the 6 DOF motion of the 

humerus.  

By creating a device which integrates these two data streams, it is possible to use one as 

an objective end point in real time, while the other is recorded as an outcome variable. 

For instance, the internal-external rotation range of motion of the glenohumeral joint can 

be assessed using this device by defining an applied axial torque as an end point and 

monitoring how much internal and external rotation exists when this criterion is met. 

2.2.7   Validation 

Once each of the new components which compose this static/passive shoulder simulator 

were implemented, it was necessary to assess their overall performance. Therefore, the 

humeral rotation mechanism, the muscle loading and guide system, and the load sensing 

and spatial tracking device were each assessed using outcome variables relevant to their 

respective function. The humeral rotation mechanism was assessed for its ability to help 

improve the accuracy and repeatability in positioning the specimen, and its ability to 

constrain DOF, which are intended to be constant during certain tests. These tests were 

performed by two experimenters: an orthopaedic resident (INA) and an experienced, 

fellowship trained shoulder specialist (GSA)4. To assess this first measure, the 

experimenter was instructed to position the specimen in various clinically relevant 

positions (45° & 90° abduction, and 30° external rotation in 90° abduction) five separate 

times. This was first done without use of the humeral guide arc, and blinded to real time 

tracking, then done again using the guide with tracking feedback. The second measure, 

4 INA – Dr Irfan Abdulla & GSA – Dr George Athwal. 
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the guide’s ability to constrain individual DOF, was compared to manual experimenter 

positioning by measuring the degree to which the level of humeral abduction changed 

during an external rotation motion both in and outside of the guide. For the unguided 

external rotation tasks, the experimenter was instructed to maintain the level of abduction 

to the best of their ability. Finally, to assess the humeral guide’s validity as a means to 

isolate and constrain rotational DOF but leave the associated glenohumeral articular 

kinematics unaffected, the humeral head translations associated with the external rotation 

task were compared for trials in and outside of the humeral guide arc.   

The muscle loading and guide system was assessed for the amount of load loss present 

when the cable was oriented in various experimentally relevant directions. Specifically, 

the humerus was abducted from 0° to 90° in 15° increments, with scapular rotation 

simulated using a 2:1 ratio. This range of rotation produced a corresponding angle of 90° 

to 30° between the cable and the most lateral guide. Load loss may result from frictional 

losses or losses in the actuator system; therefore, the loss was quantified as the measured 

load at the insertion site compared to the actuator load command (10, 20, 30, 40 N). 

Repeatability of the loss was assessed using five repeated trials at 0° and 90° of 

abduction. 

The load sensing and spatial tracking device was also evaluated. Since the end point 

criterion for tests involving this device would primarily be based on load data, the device 

was assessed for its ability to increase the accuracy and repeatability of tests that depend 

on a load based endpoint. Specifically, the ability to meet a predefined torque end point 

was assessed for an external rotation test first with the experimenter blinded, and 

subsequently with the experimenter able to see the torque they were applying in real time. 

The torque endpoint for this test (0.8 Nm) was chosen by recording the self-selected 

endpoint of an experienced shoulder surgeon (GSA) instructed to perform their standard 

clinical assessment of external rotation without real time feedback. Prior to the blinded 

trials, the experimenter was given as much time as required to practice the test while 

observing the real time feedback, in order to allow them an opportunity to assess the level 

of resistance corresponding to the desired endpoint.  

 

 



www.manaraa.com

89 

During the validation tests of the humeral guide and the instrumented humeral rod, the 

muscles of the shoulder were loaded using ratios previously defined by Wellmann et al. 

(2009), and with the minimum magnitude required to reduce the joint. Tests performed 

with this level of muscle loading were considered to be a ‘standard load’ while tests were 

also performed with no muscle load and two times the standard load. In the cases where 

real time feedback was used to achieve a desired endpoint, the largest value of overshoot 

recorded in the trial was selected as the achieved endpoint because in many experimental 

protocols, surpassing the target may cause some form of damage. Thus, it was important 

to assess this overshoot value rather than simply selecting the point in the data stream 

which most closely matched the endpoint. The differences between the tests performed 

using the guide and the unconstrained trials were compared using Paired Samples T-tests 

with significance set a p<0.05. Note that p-values are only present for the outcomes where 

sufficient statistical power (80%) was achieved with the five repeated trials. 

2.3 Results 

2.3.1 Humeral Guide 

Placing the humerus in 45° and 90° of abduction was found to be significantly more 

accurate (p<0.008) and repeatable when using the humeral guide arc and real time 

feedback; it achieved average values of 45.0±0.2° and 90.2±0.2° while manual 

positioning produced values of 50.0±1.7° and 94.1±1.5°, respectively. The accuracy of 

orienting the humerus in a predefined external rotation value of 30° was not markedly 

improved by the humeral guide (31.4±0.7°) versus manual positioning (31.7±1.5°) for the 

primary experimenter (INA). However, both accuracy and repeatability were noticeably 

increased for the secondary experimenter (GSA) (30.8±0.7° vs 34.2±3.1°) but this 

comparison did not reach significance (p=0.122). 

During an external rotation range of motion test with the humerus initially held in 90° of 

abduction, the variation in abduction angle was found to be significantly smaller (p=0.01) 

with the humerus constrained by the humeral guide arc (0.5±0.03°) in comparison to the 

experimenter manually maintaining abduction (7.3±3.4°). However, this difference was 
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less pronounced in the results of the secondary experimenter (GSA) (0.4±0.1° vs 

1.0±0.3°). Comparison of the variation in abduction between the two experimenters out of 

the arc and in the arc demonstrated that their ability to maintain abduction significantly 

differed during unconstrained positioning (6.3±4.0°, p=0.024) but not when using the 

humeral guide arc (0.1±0.1°, p=0.094). Variations in humeral abduction for tests both in 

and outside of the arc were found to increase when no muscle loading was applied and 

decrease when 2x muscle loading was applied (Figure 2.10). However, the largest amount 

of variation, when using the guide, remained less than half that of the smallest variation 

during unconstrained testing (0.5±0.1° vs 1.8±0.1°), and comparisons between these two 

methods at both load levels were found to be significant (p<0.04).  

Evaluation of the glenohumeral kinematics associated with the external rotation task 

demonstrated that, during standard and 2x standard muscle loading, humeral head 

translations were similar for trials performed in and outside of the arc (average resultant 

translation: 2.2±0.8mm vs 2.1±0.6mm, p>0.451) (Figure 2.10). However, with no muscle 

load applied, humeral head translations were markedly smaller when using the humeral 

guide arc compared to unconstrained positioning (average resultant translation: 

16.6±0.4mm vs 21.9±0.5mm, p<0.001). 

2.3.2 Muscle Loading & Guide System        

Across abduction, the load lost due to the actuator and cable guide system ranged from an 

average of 2.2±1.3 N at 0° abduction to 0.6±0.3 N at 90° abduction when averaged over 

the four load levels (Figure 2.11). Additionally, on average, the measured load loss 

increased by 0.7 N for each 10 N increment in actuator load. The repeatability of these 

loss measurements were found to range from ±0.03-0.08 N across the four load levels 

with the humerus in 0° abduction and ±0.02-0.05 N in 90° abduction.    
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Figure 2.10: Variation in abduction.  
Variations were monitored during an external rotation motion performed with and 
without assistance of humeral guide.  
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2.3.4 Integrated Load Sensing and Spatial Tracking Device        

The accuracy and repeatability of meeting a predefined torque endpoint was markedly 

higher when using the humeral guide arc and instrumented humeral rod (0.01±0.01 Nm) 

in comparison to attempting to achieve the same value using only clinical experience 

while blinded to real time feedback (0.2±0.1 Nm). Trials performed by the secondary, 

more experienced experimenter (GSA), produced similar accuracy results (0.02 Nm vs 

0.1 Nm); however, this experimenter’s repeatability was not decreased to the extent of the 

first experimenter when performing the task outside of the guide (±0.01 Nm vs ±0.04 

Nm). Using the humeral guide arc, performing tests with no load produced greater 

accuracy and repeatability (0.01±0.003 Nm) than performing tests with 2x standard 

loading (0.03±0.02 Nm) (Figure 2.12). In contrast, when manually positioning the 

humerus, results did not change when load was removed (0.2±0.1 Nm) but accuracy and 

repeatability did improve with 2x load applied (0.06±0.04 Nm); however, these results 

did not reach the levels achieved using the humeral guide arc. 

2.4 Discussion 
Previously developed in-vitro shoulder simulators have focused on the assessment of 

static and passive outcome variables; however, in many cases these systems have relied 

on the experimenter’s ability to accurately and repeatably orient the joint during testing. 

Additionally, these systems have used only minimal levels of real time data to ensure that 

testing end points are based on objective criteria rather than experimenter experience and 

‘feel’. As well, many of these systems have neglected critical aspects of shoulder 

function, thus limiting the clinical relevance of their findings. The simulator described 

above, therefore, was intended to address the limitations encountered in previously 

reported simulators in order to achieve higher levels of physiologic accuracy, assessment 

repeatability, and endpoint objectivity. By achieving these goals, data produced in future 

biomechanical investigations will be able to effectively investigate phenomenon with 

smaller effect sizes (i.e. smaller differences between conditions and greater variance in 

the data) while also decreasing the sample sizes required to obtain sufficient power to 

address questions of interest.  
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Figure 2.11: Load loss in actuator and guide system.  
Losses were recorded as a function of applied load and abduction angle. 

 
Figure 2.12: Ability to meet a predefined torque value.  
The torque achieved during external rotation test with and without real time feedback. 
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The systems developed to augment the existing simulator were each intended to improve 

one or more of the above goals; however, it was necessary to validate each of these in 

terms of their ability to achieve the desired goal (i.e. improve physiological accuracy, 

etc.) and to confirm that they did not unduly alter or influence shoulder function. The 

effect of the humeral guide arc was first assessed, and it was found to significantly 

improve the accuracy and repeatability of specimen placement in predefined levels of 

abduction. In the case of orienting the joint in axial rotation, use of the arc improved the 

repeatability of achieving a desired target but only improved the accuracy in one 

experimenter. This, however, can be attributed to the high accuracy achieved manually by 

one experimenter rather than inaccuracy when using the guide.  

Beyond aiding in the positioning of the glenohumeral joint, the guide arc was intended 

improve the experimenter’s ability to perform passive motion assessments by isolating 

each of the three rotational DOF so that they could be independently constrained or 

manipulated. Together, the positioning capability and ability to isolate rotations ensures 

that desired rotations can be maintained while others are independently varied thus 

increasing the accuracy and repeatability of assessments. The success of the arc in 

achieving isolation of rotations was assessed during an external rotation task, with the 

arm in 90° abduction, by measuring the degree to which the humerus’ abduction angle 

varied during the motion. During standard muscle loading, the humeral guide permitted 

significantly less variation in abduction as compared to the variation seen without the 

guide. Variation was found to decrease for the unconstrained tasks when double the 

muscle load was applied; however, these variations never decreased to the level achieved 

by the humeral guide. It was additionally found that abduction variation differed between 

experimenters without use of the humeral guide, but not when the guide was employed. 

Therefore, we can say that the humeral guide arc is effective at eliminating the variability 

associated with inter-experimenter positioning, thus increasing the validity of these 

assessments. Overall, these findings demonstrate that the arc is effective at isolating the 

abduction DOF which is important for a number of clinically relevant tests in which 

performing a functional test in a very specific joint orientation is critical to correctly 

assessing the effect of an injury and/or reconstruction. 
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Another important assessment of the influence of the humeral guide system is the 

evaluation of how it affects the articular translations of the glenohumeral joint. Evaluation 

of this outcome gives an indication of whether the apparatus constrains or alters normal 

translational kinematics. With this in mind, data from the external rotation trials 

demonstrated that translations of the humeral head do not statistically differ between 

motions in and outside of the arc when standard and 2x standard muscle loading are 

applied. Therefore, the humeral arc can be considered to not significantly influence or 

constrain articular kinematics despite it locking the joint in a set level of abduction. 

Articular kinematics did, however, differ between tests in and outside of the arc when no 

muscle load was applied. In this case, translations in the arc were increased compared to 

when load was applied, but these were still significantly smaller than the translations 

accompanying tests outside of the arc. However, this difference is most likely attributable 

to the larger variation in abduction associated with performing this test outside of the 

humeral arc rather than to any undue constraint caused by the arc. It should be noted that 

a limitation of this evaluation was that the magnitude of misalignment between the 

glenohumeral joint center and the humeral guide was not varied and thus it was not 

possible to characterize the sensitivity of changes in glenohumeral kinematics to changes 

in alignment. However, it is believe that the degrees of freedom permitted between the 

guide and the humeral rod decreases the level of sensitivity to misalignments which are of 

a reasonable magnitude.   

Despite the positive results produced by the humeral guide in terms of reducing variation 

in humeral orientation during testing and its lack of effect on joint translations, the use of 

this system to control humeral orientation does have an associated limitation. Namely, it 

precluded the replication of the arms true mass and inertial properties. Additionally, the 

manner in which the mass of the arm was supported by the arc may not have accurately 

replicated the way in which this was achieved by the experimenter during testing outside 

of the arc. With that said, because no differences were seen between the glenohumeral 

kinematics with and without the guide, it is believed that these limitations had minimal 

effects on the physiologic accuracy of the conditions produced by the simulator.  
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Evaluation of the muscle loading and guide system demonstrated that the total load loss in 

the system, due to both actuator losses and friction in the guides, never exceeded 3.8 N. 

Additionally, this loss level was only observed in the case where the highest load (40 N) 

was applied in 0° of abduction, corresponding to an ~90° angle of wrapping of the cable 

around the guide. Beyond this configuration, all losses fell below 3 N, and for the 

majority of the abduction range of motion (30°-90°), only one configuration was above 

2.5 N. Although the data have an overall decreasing trend across abduction, some non-

linearity exists between 30° and 75°. This non-linearity can be attributed to the effect of 

simulating scapular motion during these tests, which caused the angle of the cable with 

respect to the actuator alignment guide to vary in an irregular fashion. The load losses 

observed with this system, therefore, can be considered small in relation to the loads 

applied during testing. Also, in cases where precise application of a desired load is 

critical, this data can be used to adjust the commanded actuator load. Therefore, the 

system implemented here has minimal effect on the accurate application of a desired 

muscle load, and thus enables loading scenarios with greater physiologic accuracy to be 

implemented. 

The instrumented humeral rod improved accuracy by ~21% and repeatability by ~24% in 

meeting torque endpoints, relative to the target value of 0.8 Nm. However, these 

improvements were not statistically significant, which can be attributed to the relatively 

small target value and the signal noise associated with the measurements. The data also 

indicated that the ability to meet a torque endpoint criterion, both with and without 

feedback, did not change when no muscle loading was applied. However, the 

experimenter’s ability to accurately achieve the desired endpoint was improved when 

twice the standard muscle load was applied. It is probable that this improvement in 

accuracy resulted from the greater joint stability due to muscle loading, which allowed the 

experimenter to concentrate more closely on achieving the desired target, and less on 

maintaining joint reduction in the desired level of abduction. Although these findings 

were not able to demonstrate a significant difference between manual and feedback aided 

assessments, use of the instrumented humeral rod had no negative effects on achieving 
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predefined load endpoints and thus may represent a useful tool in improving the 

consistency of biomechanical assessments. 

Evaluation of each of the major improvements to the existing simulator system was 

undertaken to assess their performance and perhaps more importantly, to ensure that their 

function did not unduly affect joint function and kinematics. The results of this evaluation 

process, taken together, have shown that the systems achieved improved accuracy and 

repeatability in comparison to existing systems and methodologies, which rely on the 

experience of the experimenter. As well, the systems developed herein were not found to 

have undesirable effects on shoulder function nor, most importantly, on the articular 

kinematics of the glenohumeral joint when it is positioned and constrained by the humeral 

guide system. Therefore, these systems are likely to improve the validity of 

biomechanical and clinical assessments performed on this simulator and thus the value of 

the results obtained. These new systems will also improve the simulator’s overall ability 

to detect differences between various testing conditions and reduce the sample size 

required to address questions of interest.  
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CHAPTER 3 – The Effect of the Conjoined 
Tendon of the Short Head of the Biceps 
and Coracobrachialis on Shoulder Stability 
& Kinematics during In-Vitro Simulation 

3 - 
OVERVIEW 

This chapter demonstrates the passive capabilities of the simulator to evaluate 

basic biomechanical phenomenon. Specifically, this study investigates the 

biomechanical effects of a secondary shoulder muscle. Existing simulators have 

actuated the rotator cuff and deltoid, however, the effects of secondary muscles, 

such as the short head of the biceps and coracobrachialis (SH&C) are not well 

understood. This study investigated the effect of SH&C tension at four loading 

levels: 0, 5, 10, 15 N. Outcomes included glenohumeral stiffness for anterior 

loading and extension range of motion (ROMs). Four joint configurations were 

tested: adduction and 90o abduction, each in neutral and external rotation. 

Increasing SH&C load resulted in a significant trend of increased stiffness across 

all joint configurations (p=0.008). However, only loading in neutral rotation 

produced significant comparisons (10 & 15 N compared to 0 N: p=0.038 & 

p=0.043). An insignificant trend was observed between increases in SH&C load 

and decreased extension ROM (p=0.065). Thus, the SH&C provides a stabilizing 

barrier effect, but only in configurations when it wraps directly anterior to the 

humeral head. Thus, SH&C may be important to improving the physiologic 

accuracy of in-vitro simulation. These results also illustrate the simulator’s ability 

to elucidate the effects of basic biomechanical phenomena.5 

5 A version of this work has been published: Giles, J. W., Boons, H. W., Ferreira, L. M., Johnson, J. A., & 
Athwal, G. S. (2011). The effect of the conjoined tendon of the short head of the biceps and 
coracobrachialis on shoulder stability and kinematics during in-vitro simulation. Journal of 
Biomechanics, 44(6), 1192-1195. doi:10.1016/j.jbiomech.2011.02.012   
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3.1 Introduction 
The use of complex simulators for the measurement of in-vitro glenohumeral joint 

stability and kinematics under active loading is increasingly prevalent. Existing 

simulators have commonly actuated major muscle groups such as the rotator cuff and 

deltoids. However, there is no agreed upon set of secondary muscles, that are critical for 

accurate replication of joint mechanics, such as the biceps brachii, coracobrachialis, 

pectoralis major, and latissimus dorsi (Wellmann et al., 2009; Schamblin et al., 2009; 

McMahon et al., 2003; Kedgley et al., 2007). Before a definitive set can be defined, the 

biomechanical effects and importance of each of these secondary muscles must be 

assessed.  

As discussed in Section 1.2.3.1, the conjoined tendon of the short head of the biceps and 

coracobrachialis (SH&C) crosses the glenohumeral joint anterior to the humeral head 

(HH), providing a barrier effect, that increases joint stiffness, with the joint in abduction 

(Itoi et al., 1993). Although the SH&C has gained surgical importance in treating 

complex instability (Armitage et al., 2010; Wellmann et al., 2009), its role during in-vitro 

replication of in-vivo conditions has not been studied. Hence, we investigated the effect of 

SH&C loading on glenohumeral joint stiffness and kinematics in various joint positions. 

We hypothesized that the passive capabilities described in Chapter 2 would enable studies 

performed on the simulator to identify the conditions in which the SH&C has a significant 

effect on shoulder biomechanics. More specifically, we hypothesized that SH&C loading 

contributes a significant stiffening effect to the glenohumeral joint, and that loading of 

this muscle group during extension will decrease anterior humeral head translations to 

levels similar to those of the in-vivo physiologic state, without unduly limiting shoulder 

range of motion (ROM). 

3.2 Methods 

3.2.1 Simulator Configuration 

Six specimens (average age: 76.7 yrs) were tested following visual and radiographic 

examination for any evidence of joint degeneration, injury, or prior surgery. The 
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specimens were sectioned at the mid-humerus and the skin and subcutaneous tissues were 

dissected away. The intra-medullary humeral rod – described in Section 2.2.6 – 

instrumented with a six degree-of-freedom load cell (Mini45, ATI-IA, NC) and optical 

trackers (Optotrak Certus, NDI, ON), was cemented into the sectioned humeral shaft, 

while the distal portion was left free to mate with the simulator. To provide a reference 

for rotation, a transverse axis on the humeral rod was aligned with the anatomic 

transepicondylar axis of the elbow using the relationship between the transepicondylar 

axis and the biceps groove at the level of the surgical neck as described by Balg et al. 

(Balg, Boulianne, & Boileau, 2006).   

Humeral and scapular digitizations were taken with respect to the bone-affixed optical 

markers to create an International Society of Biomechanics (ISB) Euler rotation sequence 

(Wu et al., 2005).  The functional glenohumeral joint center was determined from 

kinematic recordings using Woltring’s algorithm (Ehrig, Taylor, Duda, & Heller, 2006; 

Monnet, Desailly, Begon, Vallee, & Lacouture, 2007; Woltring, 1990).  The scapula was 

then cemented to the simulator – described in Section 2.2.3 and seen in Figure 3.1– in 10° 

of anterior tilt as measured between the superior axis of the ISB scapular coordinate 

system and the vertical surface of the simulator’s main plate. Ten degrees of anterior tilt 

was drawn from the literature as an average value of scapular tilt with the arm in 

adduction, and this was maintained during abducted testing as the literature also indicates 

that scapular tilt is minimal up to 90° of humerothoracic rotation (Forte, de Castro, de 

Toledo, Ribeiro, & Loss, 2009; McClure, Michener, & Karduna, 2006). At the 

completion of testing, the joint was further dissected to gain access to the joint surfaces, 

and digitizations at the superior, inferior, anterior and posterior aspects of the glenoid rim 

were recorded and used to create a separate glenoid coordinate system coincident with the 

intact glenohumeral joint center. This coordinate system was used in post-hoc analyses to 

determine glenohumeral joint translations.  

As discussed in Section 2.4, the simulator achieved highly repeatable joint configurations 

without affecting the true unconstrained motion of the natural glenohumeral joint by 

positioning the humeral rod using a spherical bearing, which allowed free glenohumeral 

translation and rotation. As well, nine muscle groups were loaded along physiologically 
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Figure 3.1: Rendering of the in-vitro shoulder simulator. 
Note that mounted specimen has soft tissues removed for clarity. The overlaid red arrows 
indicate the loading vectors for each of the muscle groups (FDELTS – three Deltoid heads, 
FSUP – Supraspinatus, FINF – Infraspinatus & Teres Minor, FSSC – Subscapularis, FLHB – 
Long Head of Biceps, FSHB – Conjoint tendon of the Short Head of Biceps). The simulator 
is capable of physiologically orienting the scapula and glenohumeral joint in 4 degrees of 
freedom (DOF). (A) Potted scapula specimen (with soft tissues omitted for clarity); (B) 
humerus (with soft tissues omitted for clarity); (C) computer controlled scapular 
elevation mechanism which achieves repeatable positioning (added during development 
described in Chapter 5 which occurred concurrently with testing in Chapter 4); (D) 
glenohumeral abduction guide arc and slider; (E) glenohumeral plane of elevation 
adjustment plate; (F) low friction deltoid and rotator cuff guide system which routes 
cables to pneumatic actuators; (G), 6 DOF tracking markers; (H) cemented humeral rod 
with interposed 6 DOF load cell; and (I) miniature pneumatic actuators used to 
separately load the long head of the biceps and the conjoint group. 
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accurate lines-of-action using the simulator’s low friction guide system and low friction 

computer controlled pneumatic actuators (Airpel E16, Airpot Co., Norwalk, CT). Sutures 

in each of the primary muscle groups were loaded as follows: the supraspinatus, 

infraspinatus and teres minor, and subscapularis (7.5 N); anterior, middle, and posterior 

deltoids (5 N) (Wellmann et al., 2009). The ratios between these loads and their specific 

magnitudes were drawn from previous literature which utilized similar protocols 

(Wellmann et al., 2009) as well as literature which investigated the effect of joint load 

magnitude on glenohumeral joint stability (Lippitt et al., 1993).  Although the precise 

glenohumeral-to-scapulothoracic rhythm – and how it varies across abduction – remains 

controversial, the traditional 2:1 ratio described by McQuade et al. was used in this study 

(McQuade & Smidt, 1998).  

This simulator enables loads to be applied to the long head of the biceps and SH&C 

which are considered secondary to the muscles traditionally loaded during in-vitro 

simulation (i.e. supraspinatus, infraspinatus, teres minor, subscapularis, three deltoid 

heads). Although the long head of the biceps is described as a secondary muscle, it is well 

reported as an important shoulder stabilizer (Burkart et al., 2003; Pagnani et al., 1996). 

Therefore, the long head of biceps was loaded (10 N) in order to ensure that its normal 

stabilizing role was not transferred to the SH&C (Figure 3.2). To assess the effect of the 

SH&C at various levels of tension, the suture was loaded to 0, 5, 10 and 15 N (Wellmann 

et al., 2009). 

3.2.2 Stiffness & Kinematics 

Two glenohumeral joint configurations were used to assess stability and ROM: (1) 

adduction (Add: 0° abduction in the scapular plane), and (2) abduction (Abd: 60° 

glenohumeral abduction in the scapular plane with 30° scapulothoracic elevation).  

Stability was quantified using glenohumeral joint stiffness (N/mm). Stiffness was 

calculated by passively applying an anteroinferiorly quasi-static load – which was 

directed through the center of the humeral head to limit the application of an associated 

moment – and dividing it by the magnitude of humeral translation relative to the glenoid 

(Figure 3.3). This produced a linear measure of the overall joint stiffness which was  
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Figure 3.2: Schematic of shoulder specimen testing configuration.  
Specimen’s humerus is resected midshaft and a steel intramedullary rod is inserted. This 
rod allows for the mounting of two miniature pneumatic actuators used to load the SH&C 
and Long Head of the Biceps, with physiologic lines of action, as indicated. Each muscle 
was loaded by a single actuator connected via a suture which was passed through the 
musculotendinous junction using a running locking stitch. Image of shoulder anatomy 
provided by Primal Pictures (ww.primalpictures.com). 
  

 

 



www.manaraa.com

106 

 

 

 

 

 

 

 

 
Figure 3.3: Sample load versus displacement profile for drawer test.  
Also note the linear regression line which exhibits the high linearity (R2=0.95, p=0.013) 
of the joint’s response to the application of a quasi-static external load. 
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roughly linear across the trial but did exhibit some degree of non-linearity as applied load 

increased.  Seventy (70) N was chosen as the maximum load during this test by first 

consulting the literature and then through pilot testing. In-vitro studies previously 

described in the literature used applied loads of between 20 and 150 N (Alberta et al., 

2006; Burkart et al., 2003; Itoi et al., 2000; Itoi et al., 1994; Lee et al., 2001; Wellmann et 

al., 2009) and in-vivo testing which used 100 N loading (McQuade and Murthi, 2004; 

McQuade et al., 1999). Due to this wide range of values, pilot testing was performed in 

which a load cell was used to determine the average maximum force, over multiple trials, 

applied by an experienced shoulder surgeon (GSA6) performing a standard drawer test. 

Maximum humeral translation was defined as the magnitude of displacement at the time 

of maximum force application.  

Stiffness was evaluated in both neutral rotation (defined as epicondylar axis parallel to the 

coronal body plane) and maximal external rotation. Maximal external rotation was 

defined as the rotation accompanying application of a predefined axial torque (±0.8 Nm). 

This torque was determined, as the average of repeated trials, by the same experienced 

shoulder surgeon (GSA) rotating the humerus until reaching a resistance consistent with 

clinical evaluation. 

Real-time feedback of the load applied to the glenohumeral joint was achieved using an 

uni-axial load cell (Model 34, Honeywell, Golden Valley, MN) while glenohumeral 

kinematics and forces were monitored during testing using the optical tracking markers 

and intra-medullary load cell described above. 

Internal-external rotation ROM was quantified as the magnitude of rotation permitted by 

the glenohumeral joint when an external axial rotation torque of 0.8 Nm was applied.  

This torque criterion was selected as it represented the load recorded during repeated 

blinded trials of a standard clinical assessment of axial rotation as performed by an 

experienced shoulder surgeon (GSA). The extension ROM was recorded in abduction and 

60° of external rotation while tracking HH translation. The end range of extension was 

6 GSA- Dr. George S. Athwal MD FRCSC 
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determined by an experienced shoulder surgeon (GSA), as the point at which soft tissue 

tension limited extension, as in clinical evaluations. 

3.2.3 Outcome Variables & Statistical Methods 

Stability was quantified in terms of glenohumeral joint stiffness (N/mm), while ROM was 

reported in degrees. For internal-external rotation, this value was taken as the rotation 

from the maximum internal to the maximal external rotation position, while horizontal 

extension ROM was quantified as the magnitude of humeral rotation about the scapula’s 

superior axis posterior to the scapular plane. A three-way ANOVA was performed for 

anterior translation tests across all configurations using SPSS 17.0 (SPSS Inc., Chicago, 

IL). The factors were: abduction (0° or 90°), humeral rotation (neutral or external), and 

SH&C load (0, 5, 10, 15 N). One-way ANOVAs and pair-wise comparison procedures 

were performed for all outcome variables at each tested shoulder configuration. The 

dependent variables were internal/external rotation ROM, extension ROM, HH 

translation and joint stiffness. 

3.3 Results 
Increasing SH&C load resulted in a significant trend of increased glenohumeral stiffness 

across the average of all joint configurations (p=0.008) (Figure 3.4). With the arm 

abducted and neutrally rotated, 0 N SH&C loading resulted in a stiffness of 10.4±5.3 

N/mm, which was less than the 5, 10 and 15 N cases by 8.9±6.1 N/mm, 10.8±5.9 N/mm 

and 11.2±6.2 N/mm, respectively. However, the difference at 5 N was not statistically 

significant (p=0.093, p=0.038 and, p=0.043, respectively) (Figure 3.5). There was no 

significant difference between 10 and 15 N cases (p=1.000). There were no significant 

differences between the 0 N SH&C loading case and the 5-15 N cases for all remaining 

joint configurations (p≥0.228) (Figure 3.5).  

Internal/external rotation ROM for both abduction levels (0°&90°), exhibited a nearly 

significant trend of decreasing motion with increasing SH&C loading (N=5, p=0.069). 

One-way ANOVA of each abduction level revealed no significant trends (N=5, p≥0.176) 

(Figure 3.6). Internal/external rotation kinematics were not measured in one specimen due  
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Figure 3.4: Joint stiffness for varying SH&C load.  
Effect of conjoined tendon loading on glenohumeral joint stiffness (mean ± 1 standard 
deviation) for applied anterior load across all joint configurations. Joint stiffness showed 
a significant, increasing trend (p=0.008) in abducted and adducted loading cases with 
the humerus in neutral or external rotation; however, no pairwise comparison was 
significantly different. 

 
Figure 3.5: Joint stiffness for varying SH&C load and joint configuration. 
Effect of conjoined tendon loading on glenohumeral joint stiffness (mean + 1 standard 
deviation) for an applied anterior load with the joint in four different configurations.   
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Figure 3.6: Ranges of motion for varying SH&C load. 
The relationship between the magnitude of conjoined tendon load and range of motion 
(mean and 1 standard deviation) is displayed. This is shown for extension (diamond 
marker) and internal/external rotation for two test configurations (triangle marker: 
abducted ROM, square marker: adducted ROM). In all configurations, the ROM tended 
to decrease with increased SH&C load, with the trend in extension approaching 
significance (p=0.065) but not in internal/external rotation (p≥0.176). Note that for 
clarity each data series is shown with only a plus or minus error bar.  
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to an equipment failure. There was a nearly significant trend of decreased extension with 

increasing SH&C load (p=0.065) (Figure 3.6). However, no comparisons between SH&C 

loading cases approached significance (0.2-4.1°, p=0.158-1.000). There was no effect of 

SH&C load on maximal anterior-posterior HH translation during extension (p=0.110). No 

SH&C load permitted significantly different translations from any other case, and all 

translations were <1.5 mm.  

3.4 Discussion 
The importance of particular muscles in accurate replication of in-vivo conditions during 

in-vitro shoulder testing using complex simulators is not fully understood. Increasing 

SH&C load was found to increase joint stiffness across all test configurations. This trend 

indicates that the SH&C plays a role in providing glenohumeral stability against 

externally applied anterior loads. This agrees with Itoi et al. (1993), who found that 

increasing short head load permitted decreased anterior HH translations.           

Additionally, abducted neutrally rotated translation results for 0 N of SH&C loading 

agree with those of McQuade et al. (1999), who assessed in-vivo translations using a 

clinical anterior drawer test with the subject’s shoulder relaxed. McQuade observed 

translations of ~8 mm with the application of a 70 N load, corresponding to a stiffness of 

~8.8 N/mm using our quantification method. McQuade and Murthi (2004) observed 

increased joint stiffness accompanying isometric muscle contraction, which agrees with 

our findings. However, quantitative comparison with these results is difficult due to the 

unknown amount of muscle contraction caused by this in-vivo study’s loading protocol. 

Translations during abduction, neutral rotation indicate a minimum SH&C load required 

to achieve a significant increase in stiffness and a maximum after which stiffness will not 

increase significantly further. A 5 N load was not sufficient to bring the tissues fully taut 

and achieve the expected barrier effect, but 10 N did cause a significant increase in 

stiffness. However, increasing SH&C load to 15 N did not provide a further increase in 

stiffness; indicating that the tendon is fully tensioned beginning at 10 N. This agrees with 

McQuade and Murthi (2004), who found that increased in-vivo, isometric muscle 

contraction did not have a greater stiffening effect than mild contraction. This suggests 
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that the SH&C be loaded with 10 N in biomechanical simulations, as this was the first 

loading value to have a significant stiffening effect. This load is greater than those applied 

to the rotator cuff muscles in this study, which may seem to contradict its secondary 

classification; however, the rotator cuff loads were chosen solely to achieve joint 

reduction and replicate resting tone. Dynamic motion of the shoulder through rotator cuff 

and deltoid loading would require much higher loads than the 10 N SH&C force required 

to initiate its stabilizing effect.  

Comparisons can be drawn between our results for the adducted, neutrally rotated and 0 

N SH&C loading case and those of Harryman, who recorded in-vivo glenohumeral 

translations while performing the clinical anterior drawer test on subject’s adducted 

shoulder (Harryman et al., 1992). This comparison revealed levels of end-state translation 

similar to our own.  

The adducted, neutrally and externally rotated, as well as the abducted, externally rotated 

configurations, showed no significant differences in joint stiffness. This lack of effect was 

due to the position of the SH&C relative to the HH, which agrees with previous 

observations by Itoi et al. (1993). In both adducted configurations, the SH&C was 

observed to be positioned medial to the center of the glenohumeral joint and thus could 

not provide a barrier effect. Similarly, the abducted, externally rotated configuration 

caused the SH&C to sit primarily on the lateral aspect of the HH.  

The biomechanical hypothesis to be investigated in this study was that SH&C loading 

would affect shoulder kinematics by decreasing anterior HH translations during 

extension. However, no loading level significantly affected HH translations, which were 

consistently less than 1.5 mm. This agrees with Harryman et al. (1992) who recorded 0±3 

mm of in-vivo HH translation during a clinical apprehension test with the shoulder 

relaxed. The labrum and rotator cuff were intact throughout our testing protocol. We 

believe that these structures alone provided effective joint reduction during extension 

(Hess, 2000). Despite this, we expect SH&C to have a significant stabilizing effect during 

extension in joints with anterior instability because it wraps directly across the anterior 
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HH. As hypothesized, SH&C loading did not limit extension or internal/external rotation, 

similar to the SH&C’s expected effect in-vivo.  

Some simplifying assumptions were utilized and can be counted as limitations of this 

study. One weakness is our modeling of each muscle with a single line-of-action which 

would not completely replicate the physiologic state. Additionally, in the case of the three 

deltoid groups, the muscle bellies were not loaded as this would have required suturing 

the tissues proximally resulting in impingement with the deltoid guides on the acromion. 

Instead, sutures were inserted directly into the tendinous insertion on the deltoid 

tuberosity. Thus, we did not replicate any barrier effects resulting from deltoid tensioning 

which must be viewed as a limitation of this testing setup. Some variability in the 

translational loading rate, which would affect the stiffness properties of soft tissues, did 

exist and was a weakness of this study; however, this was minimized by the 

experimenter’s clinical evaluation experience. Related to this, the joint stiffness was 

expressed as a single value intimating that it is a constant value across load application; 

however, as demonstrated in Figure 3.3 a joint’s stiffness does exhibit some non-linearity. 

Therefore, the values presented here can only be used as an overall measure while further 

data would be required to fully understand a joint’s stiffness profile. A final weakness 

was the use of only six specimens despite some secondary outcomes continuing to 

increasingly approach significance; however, their changes were not physiologically 

meaningful. 

Our findings demonstrate that the SH&C does cause an anterior stabilizing effect by 

providing a soft tissue barrier which stiffens the glenohumeral joint, but only in 

configurations when it wraps directly anterior to the HH. However, this effect did not 

reduce the already small HH translations which accompany extension. Additionally, in no 

case did SH&C loading cause limitation of the joint’s ROM in extension or 

internal/external rotation. Thus, SH&C loading does play a role in the intact stability of 

the glenohumeral joint and may be an important means to increase the physiological 

accuracy of in-vitro simulation. Additionally, we suspect the importance of replicating 

this structure will be increased when studying shoulder instability conditions such as 

labral tears and glenoid fractures. Finally, the data presented here demonstrates that the 
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simulator approximates physiologic conditions and experimental tests whose repeatability 

are sufficient to clarify the biomechanical effects of discrete structures such as the SH&C. 
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CHAPTER 4 – The Bristow-Latarjet: Why These 
Techniques Should Not Be Considered 
Synonymous 

4 - 
OVERVIEW 

This chapter presents the application of the shoulder simulator to the investigation 

of a clinical question of interest. Recurrent shoulder instability is commonly 

associated with glenoid bone defects. As such, coracoid transfer procedures, like 

the Bristow and Latarjet, are frequently used to address these bone deficiencies. 

Despite the frequent synonymous labeling of these transfers as the ‘Bristow-

Latarjet’, their true equivalence has not been demonstrated; therefore, our purpose 

was to compare the biomechanical effects of these two procedures. Eight cadaveric 

specimens were tested in their intact state, and following both Bristow and Latarjet 

reconstructions for three bone deficiency levels. At each condition, anterior joint 

stiffness and dislocation were assessed in adduction (Add) and abduction (Abd) 

with neutral (NR) and external rotation (ER). Substantially greater joint 

stiffness/stability occurred following the Latarjet, as compared to the Bristow, for 

15 and 30% glenoid bone loss conditions. During instability testing, 3 more 

specimens dislocated following Bristow reconstruction of a 15% defect and 5 more 

with a 30% defect as compared with the Latarjet. The Bristow and Latarjet 

procedures are not equivalent in terms of their effects on glenohumeral joint 

stiffness and stability in cases of glenoid bony deficiency. These findings have also 

helped to demonstrate the simulator’s ability to address clinical questions such as 

the purported equivalence of two structurally similar procedures7.  

7 A version of this work has been accepted for journal publication: Giles, J.W., Degen, R.M., Johnson, J.A., 
& Athwal, G.S. (Accepted Feb 2014). The Bristow-Latarjet: Why these techniques should not be 
considered synonymous. Journal of Bone and Joint Surgery. 
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4.1 Introduction 
Patients with recurrent anterior shoulder instability and associated glenoid bone 

deficiency pose a complex problem for orthopedic surgeons attempting to select the 

optimal surgical treatment.  This is especially true when this deficiency comprises a 

substantial portion of the glenoid width, making selection of the optimal surgical 

treatment particularly difficult as isolated soft-tissue repairs have exhibited failure rates as 

high as 56%-67% (Burkhart & De Beer, 2000; Tauber, Resch, Forstner, Raffl, & Schauer, 

2004). Itoi et al. found that defects as small as 21% of the glenoid width require 

significantly less translational force to produce humeral head subluxation (Itoi, Lee, 

Berglund, Berge, & An, 2000) and consequently recommended osseous reconstruction. 

Various techniques have been proposed for osseous reconstruction, including iliac crest 

autograft (Montgomery et al., 2005; Warner, Gill, O'hollerhan, Pathare, & Millett, 2006), 

allograft reconstruction, and coracoid transfer. Biomechanical investigations by 

Wellmann et al. (Wellmann et al., 2009) and Giles et al. (Giles et al., 2013), however, 

have shown that coracoid transfer procedures outperform other reconstructive options due 

to the additive dynamic stabilizing ‘sling’ effect produced by the repositioned conjoint 

tendon.  These findings support the thought that coracoid transfer represents a favorable 

option for instability-related glenoid defects, with some even proposing its use in the 

treatment of isolated capsulolabral tears (Helfet, 1958; Latarjet, 1954).  

Coracoid transfer has been described using multiple techniques, with the most common 

being the Bristow procedure and the Latarjet procedure, but with little consensus on 

which is optimal. While the Bristow procedure transfers only the tip of the coracoid such 

that the resected surface contacts the glenoid vault (Helfet, 1958), the Latarjet procedure 

transfers the entire horizontal pillar such that the inferior surface of the coracoid contacts 

the vault (Figure 4.1) (Latarjet, 1954). Despite the frequent synonymous labeling of these 

coracoid transfers as the Bristow-Latarjet coracoid transfer (Boileau, Mercier, & Old, 

2010; Boileau, Mercier, Roussanne, Thelu, & Old, 2010; Emami, Solooki, Meshksari, & 

Vosoughi, 2011; Griesser, Harris, McCoy, Hussain, Jones, Bishop, & Miniaci, 2013a; 

Griesser, Harris, McCoy, Hussain, Jones, Bishop, & Miniaci, 2013b; Hovelius, Vikerfors,  
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Figure 4.1: Renderings of the Bristow (A) and Latarjet (B) coracoid transfers.  
Note that these renderings illustrate reconstruction of a 15% anterior glenoid bone 
defect; however, the graft size and orientation for both repairs is consistent across the 
three tested defect sizes (0%-isolated capsulolabral injury, and 15% and 30% glenoid 
defects). 
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Olofsson, Svensson, & Rahme, 2011; Hovelius, Sandstrom, Olofsson, Svensson, & 

Rahme, 2012; Omidi-Kashani, Sadri-Mahvelati, Mazlumi, & Makhmalbaf, 2008; 

Paladini, Merolla, De Santis, Campi, & Porcellini, 2012), they represent different 

reconstructive procedures and their true equivalence has not been demonstrated.  As such, 

the purpose of this comparative study was to investigate the effects of the Bristow and the 

Latarjet procedures in order to define which technique is biomechanically superior, 

providing clarity to the orthopedic community. This was achieved by comparing shoulder 

stability and motion when treating progressive levels of anterior instability (isolated 

capsulolabral injury, 15 and 30% glenoid deficiency). We hypothesized that the smaller 

coracoid fragment transferred during the Bristow procedure would result in inferior 

stabilization of the glenohumeral joint, in comparison to the Latarjet reconstruction, 

which would become more notable with increasing glenoid defects. 

4.2 Materials & Methods 

4.2.1 Specimen Preparation and Shoulder Simulator 

Eight (8) fresh-frozen cadaveric shoulders (74±11years) were tested after being screened 

for rotator cuff deficiency, osteoarthritis, or prior surgery.  Following transection at the 

mid-humerus, shoulder dissection was performed to identify the deltoid muscle, rotator 

cuff muscles, short and long heads of the biceps, and glenohumeral joint capsule.  

Specimen preparation then proceeded as described in Section 3.2.1 including the suturing 

of the same muscles, creation of coordinate systems, and potting of the specimen into the 

simulator seen in Figure 3.1. As well, testing parameters such as muscle loads and testing 

positions followed those described in Chapter 3 (Section 3.2.1). Some small 

modifications to the setup and procedure described in Chapter 3 (Section 3.2.1), were 

made for the purposes of this study. First, digitization of the glenoid was performed 

following intact testing rather than at the completion of testing because the anterior 

glenoid is compromised during the testing protocol. As before, these digitizations 

included the superior, inferior, anterior and posterior aspects of the glenoid rim and were 

used to create a separate glenoid coordinate system coincident with the intact 

glenohumeral joint center. This coordinate system was again used in post-hoc analyses to 

determine glenohumeral joint translations. Second, using the results obtained in Chapter 
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3, a constant load of 10 N was applied to the conjoint tendon of the short head of the 

biceps and coracobrachialis. 

4.2.2 Experimental Testing Protocol 

The protocol was designed to compare the effects of the Bristow and Latarjet procedures 

on joint stiffness, stability and ROM when treating isolated capsulolabral injuries, as well 

as 15% and 30% bony glenoid defects. In order to achieve repeated joint access, required 

in this repeated-measures study, an extended lesser tuberosity osteotomy was utilized.  A 

microsagittal saw cut the osteotomy, which was then fixated using two 1/8” bicortical 

nut-and-bolt constructs. Previous investigations demonstrated that the osteotomy has no 

effect on biomechanical outcomes (Giles et al., 2011).  

Seven conditions were tested: Intact, Bristow and Latarjet coracoid transfers with an 

isolated capsulolabral injury (intact glenoid), followed by Bristow and Latarjet with 15 

and 30% anterior glenoid bone defects. The anterior capsulolabral injury was created by 

releasing the anteroinferior glenoid labrum away from the glenoid rim and sectioning the 

capsule from the humeral neck to the inferior glenoid pole.  Glenohumeral instability was 

ensured by propagating the injury through forcible dislocation in the anteroinferior 

direction.    

The 15 and 30% bone defects were created as per the description of Saito et al. who 

found that the average defect is located close to the 3:00 o’clock position (Saito et al., 

2005). Yamamoto’s technique for creating simulated glenoid defects was also utilized 

(Yamamoto et al., 2009). Using digital calipers, the maximum anteroposterior glenoid 

width was measured, while a microsagittal saw then created the defects by cutting along a 

line perpendicular to the anteroposterior direction at 15 and 30% of the glenoid width 

(Figure 4.2). 
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Figure 4.2: Renderings of the scapula showing the three levels of bony deficiency.  
All renderings are viewed perpendicular to the glenoid plane. (A) Isolated capsulolabral tear with intact glenoid bony anatomy, (B) 
capsulolabral tear with associated glenoid deficiency equivalent to 15% of the glenoid width, and (C) capsulolabral tear with 
associated 30% glenoid deficiency. 

 

 



www.manaraa.com

124 

Following creation of the isolated capsulolabral tear and the subsequent 15 and 30% bone 

defects, a coracoid transfer was performed and tested. The initial reconstruction was then 

removed and the second transfer was performed. Reconstruction order was randomized 

and balanced between the two procedures. The Bristow reconstruction was performed as 

originally described (Helfet, 1958) while the Latarjet was performed as described by 

Walch & Boileau (Walch & Boileau, 2000).  Both reconstructions required the transfer of 

a segment of the coracoid with an attached conjoint tendon; however, differing graft sizes 

were required. Therefore, in order to test both reconstructions in random order and at 

multiple defect levels, a size-matched coracoid with attached conjoint tendon was 

harvested from a fresh-frozen donor for each specimen tested. The reconstruction that 

employed this harvested coracoid was selected using a balanced randomization procedure 

to ensure that equal numbers of Bristow and Latarjet reconstructions were performed 

using the donor. For the Bristow reconstruction, the coracoid tip was osteotomized 10mm 

from its end and, along with the attached conjoint tendon, was transferred through a 

horizontal subscapularis split to the anterior glenoid. The subscapularis split was 

conducted between the upper 2/3rd and lower 1/3rd of the tendon.  The osteotomized 

surface of the coracoid tip was then rigidly fixed to the glenoid vault using one 3.75mm 

bicortical screw inserted along the graft’s long axis (Figure 4.1). For the Latarjet 

reconstruction, the coracoid process was osteotomized at its angle or elbow and 

transferred with the conjoint tendon to the anterior glenoid through the same 

subscapularis split.  The inferior surface of the coracoid was decorticated and fixed to the 

anterior glenoid using two 3.75mm bicortical screws (Figure 4.1). For each of these 

reconstructions, the coracoid was removed following testing in order to allow the other 

reconstruction to be fixated and tested or in order to create the next defect level. Because 

repeated fixation to the glenoid vault was required, care was taken to utilize the same 

holes for each reconstruction, obtaining bicortical purchase through the posterior cortex 

of the glenoid neck (no loss of coracoid fixation was observed at any point during 

testing).  
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During testing, the conjoint tendon was loaded in order to replicate the dynamic ‘sling’ 

effect (Burkhart et al., 2007). Although the location of its origin (the coracoid) was 

shifted, the tendon was loaded in the same manner as in Sections 2.2.5 & 3.2.1, by 

suturing the proximal musculotendinous junction and replicating its natural line-of-action 

before connecting it to a miniature pneumatic actuator (Bimba, University Park, IL) 

mounted to the humerus (Figure 3.1 & Figure 3.2). Despite this change in position, the 

tendon was able to be accurately tensioned, throughout the tested ROM, to a magnitude of 

10 N. 

4.2.3 Stability and Range of Motion 

Two glenohumeral joint configurations were used to assess stability and ROM: (1) 

adduction (Add: 0° abduction in the scapular plane); and (2) abduction (Abd: 60° 

glenohumeral abduction in the scapular plane with 30° scapulothoracic elevation).  

Stability was quantified using glenohumeral joint stiffness (N/mm) and the occurrence of 

humeral head dislocation.  As in Chapter 3 (Section 3.2.2), stiffness was calculated by 

passively applying a 70 N anteroinferiorly directed quasi-static load and dividing it by the 

magnitude of humeral translation relative to the glenoid (Figure 3.3). Maximum humeral 

translation was defined as the magnitude of displacement at the time of glenohumeral 

dislocation, or during maximum force application if dislocation did not occur. 

Dislocation, which was considered to have occurred when the apex of the humeral head 

passed the intact/reconstructed glenoid rim, was assessed visually during testing and 

confirmed using optical tracking data. Stiffness was evaluated in both neutral rotation 

(NR) (defined as epicondylar axis parallel to the coronal body plane) and 60° of external 

rotation (ER). Real-time feedback of the load applied to the glenohumeral joint was 

achieved using an uni-axial load cell (Model 34, Honeywell, Golden Valley, MN) while 

glenohumeral kinematics and forces were monitored during testing using the optical 

tracking markers and intra-medullary load cell as described in Chapter 3. 

Two modes of dislocation were assessed. The first mode of dislocation involved passively 

extending the shoulder in a manner consistent with clinical evaluation until a soft-tissue 

end-point was reached or dislocation occurred. This test was performed with the shoulder 

in 60° of external rotation and 90° of composite abduction, commonly termed the 
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‘position of anterior apprehension.’ Results from this test provided a qualitative 

assessment of the incidence of dislocation and a quantitative measure of horizontal 

extension ROM. The second assessment involved identifying dislocation during the 

above described joint stiffness test with the shoulder in abduction and external rotation. 

This assessment replicated dislocation during a clinical drawer test.  

The internal-external rotation ROM test procedure of Chatper 3 was repeated here. 

Briefly, ROM was quantified as the magnitude of rotation permitted by the glenohumeral 

joint when an external axial rotation torque of 0.8 Nm was applied. 

4.2.4 Outcome Variables & Statistical Analyses  

Stability was quantified in terms of glenohumeral joint stiffness (N/mm) and joint 

dislocation (dislocation or no dislocation), while ROM was reported in degrees. For 

internal-external rotation, this value was taken as the rotation from the maximum internal 

to the maximal external rotation position, while horizontal extension ROM was quantified 

as the magnitude of humeral rotation about the scapula’s superior axis posterior to the 

scapular plane. Two-way repeated-measures Analyses of Variance (RM-ANOVAs) were 

performed for each outcome variable to assess the main effects and any interaction effects 

of repair technique (Bristow vs. Latarjet) across the three defect levels (0, 15, 30% 

glenoid defect). In the case of any interactions, follow-up post-hoc tests were performed. 

The results from intact testing could not be included in the Two-way RM-ANOVAs as 

they were not a repeated measurement and thus a series of One-way RM-ANOVAs were 

performed in order to allow comparisons between the reconstructions and the intact state. 

These One-way RM-ANOVAs and associated pair-wise comparisons were carried out for 

all outcome variables at each tested shoulder configuration and defect level. Each analysis 

consisted of three conditions: intact, Bristow, and Latarjet.  Significance was set to 

p<0.05. A-Priori power analyses were performed for each outcome variable. It was found 

that 8 specimens were sufficient to achieve a minimum power of 80% in detecting 

clinically relevant differences of approximately 10° for ROM and 30% for joint stiffness.  
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4.3 Results 

4.3.1 Joint Stiffness and Stability 

Comparing the Bristow and Latarjet procedures across the three defect levels using a 

Two-way RM-ANOVA demonstrated that there were no interaction effects between 

changes in reconstruction technique and defect size (p≥0.189) except with the arm in 

Add-NR (p=0.014). In this case, post-hoc tests demonstrated that the Bristow produced 

significantly less stiffness than the Latarjet for the 15 and 30% defects (4.7±1.1 N/mm, 

p=0.004 & 5.6±1.9 N/mm, p=0.021, respectively) but not the 0% defect (2.0±1.2 N/mm, 

p=0.156). The main effect of reconstruction type was found to be significant for all joint 

configurations, with the Latarjet resulting in significantly greater stiffness than the 

Bristow across all three glenoid defect levels (Add-NR:4.1±1.3 N/mm, p=0.018; Add-

ER:4.9±1.3 N/mm, p=0.007; Abd-NR:1.8±0.5 N/mm, p=0.012; Abd-ER:1.9±0.4 N/mm, 

p=0.003).  

Subsequent One-way RM-ANOVAs for each joint configuration at each of the three 

defect levels (Figure 4.3 & Figure 4.4) further illustrate the significance of the above 

trends. The Bristow reconstruction resulted in joint stiffness values that were consistently 

less than the intact and the Latarjet. Decreases in stiffness between the Bristow and intact 

shoulder were significant at all defect levels with the joint in adduction (p≤0.040) and for 

the 15 and 30% defects with the shoulder in Abd-ER (p≤0.002). In contrast, the Latarjet 

produced stiffness values similar to intact and only differed significantly in one case; with 

the shoulder in Add-NR, following reconstruction of a 0% defect, where stiffness was 

significantly less than intact (3.9±1.1 N/mm, p≤0.026).  

One-way RM-ANOVAs also evaluated differences between the Bristow and Latarjet 

reconstructions and demonstrated that the greater joint stiffness seen following the 

Latarjet was significant for the 15% defect in Add-NR (p=0.012) and the 15 & 30% 

defects in Abd-ER (p≤0.026). Also, while not statistically significant, the Latarjet 

approached a statistically significant increase in stiffness for the 30% defect in Add-NR 

(p≤0.062) and the 15 & 30% defects in Add-ER (p≤0.064). 
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Figure 4.3: Adducted anterior glenohumeral joint stiffness.  
Data are presented for the arm in adduction (Add) and neutral (NR) or external (ER) 
rotation. Note that ‘B’ and ‘L’ denote Bristow and Latarjet reconstructions, respectively. 
Additionally, any testing state marked with a * symbol represents a significant difference 
to the intact state as found using One-way RM-ANOVA. 

 

 
Figure 4.4: Abducted anterior glenohumeral joint stiffness.   
Data are presented for the arm in abduction (Abd) and neutral (NR) or external (ER) 
rotation. Note that ‘B’ and ‘L’ denote Bristow and Latarjet reconstructions, respectively. 
Additionally, any testing state marked with a * symbol represents a significant difference 
to the intact state. 
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Glenohumeral joint stability, quantified in terms of incidents of dislocation as assessed 

during passive horizontal extension testing in the position of apprehension, resulted in 4 

of 8 and 6 of 8 specimens dislocating with the Bristow procedure for the 15 and 30% 

defects, respectively.  The Latarjet, however, allowed only one dislocation in either case 

(Table 4.1). Dislocations were also recorded during stiffness testing in abduction-external 

rotation.  This assessment found that the Bristow resulted in dislocation in 6 of 8 

specimens when treating a 15% glenoid defect and 4 of 8 specimens when treating a 30% 

defect, while the Latarjet allowed only one dislocation at each defect level. 

4.3.2 Range of Motion 

Two-way RM-ANOVA’s for ROM in adduction and abduction indicated that there were 

no interaction effects between changes in repair technique and defect size (p≥0.333). No 

significant main effects existed in internal-external rotation ROM during adduction across 

either the reconstruction type or defect level (p≥0.288) (Figure 4.5). In abduction, there 

were also no significant main effects in internal-external rotation ROM across all testing 

conditions (p≥0.452). However, One-way RM-ANOVAs at each defect level 

demonstrated that there were statistical differences between the reconstructions, and when 

comparing the reconstructions to the intact state. Specifically, both the Bristow and 

Latarjet significantly reduced ROM compared to the intact condition with differences 

across the three defect levels ranging between 12.5-20.6° (p≤0.045) for the Bristow and 

19.8-20.2° (p≤0.033) for the Latarjet. In contrast, the only difference between the two 

reconstructions was a significant reduction in ROM following the Latarjet compared to 

the Bristow for the 0% defect (7.7±2.2°, p=0.033).  

During horizontal extension with the arm in Abd-ER, there was no significant interaction 

effect or main effect in ROM across reconstruction type or defect level (p≥0.298). There 

were also no trends from One-way RM-ANOVAs comparing the reconstructions to the 

intact state for the three defect levels (Figure 4.5).  
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 Drawer Test Extension 

Defect Size 0% 15% 30% 0% 15% 30% 

Bristow 0 6 4 0 4 6 

Latarjet 0 1 1 0 1 1 

 
Table 4.1: Incidents of Glenohumeral Dislocation for Two Stability Tests 
Incidents of anterior glenohumeral joint dislocation during two stability tests. ‘Drawer 
Test’ indicates dislocations which occurred following reconstruction of a 0, 15, or 30% 
defect during the clinical drawer test. ‘Extension’ represents dislocations which occurred 
while passively extending the humerus from an initial position of abduction with external 
rotation in the scapular plane. 
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Figure 4.5: Glenohumeral joint ranges of motion. 
Range of motion is shown for ‘Axial Rotation’ with the arm in full adduction and 90° 
composite abduction, and during ‘Horizontal Extension’ with the arm beginning in 
abduction and 60° external rotation in the scapular plane. Note that ‘B’ and ‘L’ denote 
Bristow and Latarjet reconstructions, respectively. Additionally, any testing state marked 
with a * symbol represents a significant difference to the intact state.  
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4.4 Discussion 
The Bristow procedure and Latarjet procedure have long been labeled synonymously as 

the ‘Bristow-Latarjet’, under the assumption that the two procedures are equivalent; 

however, there is a lack of evidence to support this. Therefore, the purpose of this 

investigation was to clarify the biomechanical effects of the Bristow and Latarjet 

procedures and define which is optimal.  

Glenohumeral joint stiffness was assessed similarly to the clinical drawer test which 

provided quantitative information about joint kinematics and the soft-tissues that resisted 

translation. In all joint configurations and with any glenoid defect, the Latarjet yielded 

greater stiffness than the Bristow, ranging from +30 to +90%. Additionally, the Bristow 

yielded stiffness markedly less than the intact condition (-27 to -99%), while the Latarjet 

was able to restore stiffness close to intact in most conditions (-16 to +17%). Comparing 

to intact, the Bristow’s reduced stiffness was statistically significant in 8 of 12 joint 

conditions, while following the Latarjet, only 1 joint condition was significantly different. 

Comparing the two techniques, differences approached and surpassed significance in 6 of 

12 comparisons with the Latarjet outperforming the Bristow in the 15 and 30% glenoid 

defect states. Abduction with neutral rotation was the only joint configuration where no 

difference was significant for any defect level. These findings indicate that the Latarjet 

consistently outperformed the Bristow in terms of restoring joint stiffness and that the 

disparity between the two techniques increases with increasing anterior glenoid bone 

deficiency. Finally, it was found that for all shoulder configurations, stiffness following 

Latarjet reconstruction actually increased between the 0 and 15% defect and in 2 of 4 

joint configurations between the 15 and 30% defect, despite an increasingly larger 

glenoid defect. We believe that this somewhat unexpected result can be attributed to the 

progressive posterior positioning of the conjoint tendon origin on the coracoid tip as the 

graft is fixated to sequentially larger defects. This posterior translation of the tendon 

origin in turn causes the tendon to wrap under the humeral head more completely, 

strengthening the dynamic sling effect proposed by May (May, 1970) and 

biomechanically confirmed in previous literature (Giles et al., 2013; Wellmann et al., 
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2009; Wellmann et al., 2012). This progressive stiffening effect, however, was not 

observed with the Bristow procedure. 

In the condition of an isolated capsulolabral injury without glenoid bone loss, the Bristow 

and Latarjet procedures were equivalent in their ability to prevent dislocation.  However, 

in conditions of glenoid bone loss, only one specimen dislocated following either 

instability test (Drawer Test and Horizontal Extension) at any defect level for the Latarjet 

reconstruction, while the Bristow permitted dislocation in 50-75% of specimens. 

Shoulder ROM was assessed for multiple joint configurations and motions in order to 

determine what effect, if any, the two stabilization procedures produced. Internal-external 

rotation ROM was first assessed in adduction and it was found that the Bristow and 

Latarjet had variable effects between defect levels although no trends were observed and 

no differences were identified compared to the intact condition (-8 to -32%). In contrast, 

the effects of the two reconstructions were quite consistent across all conditions during 

abducted ROM testing, significantly reducing the internal-external rotation arc compared 

to the intact state (-31 to -37%, 0.001≤p≤0.045) with the exception of the Bristow 

reconstruction with an isolated capsulolabral injury (-21%, p=0.028). In addition, the 

Latarjet has a significantly more restrictive effect than the Bristow for an isolated 

capsulolabral injury (p=0.033) but their effects are equivalent for the glenoid bone loss 

cases tested. The horizontal extension ROM consistently increased across all defects 

(+4.3±2.6°) but was not statistically different from intact. Therefore, neither 

reconstruction had an effect on the shoulder’s horizontal extension ROM. 

The results of this investigation should be considered in light of previous biomechanical 

investigations of coracoid transfer procedures. Comparing these results to those of 

Wellmann et al. demonstrates good agreement with regards to the stabilizing effect of the 

Latarjet procedure in both neutral and external rotation (Wellmann et al., 2012). 

However, Wellmann did not assess range of motion and thus comparison is not possible. 

The current results for the Latarjet reconstruction, including range of motion, are also in 

agreement with those previously published by our group in a comparison of two 

techniques of Latarjet coracoid orientation (Boons, Giles, Elkinson, Johnson, & Athwal, 
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2013). Previous literature on the biomechanical effect of the Bristow procedure was 

limited to a study by Wellmann et al. who assessed the effect of a coracoid tip transfer of 

similar size to the graft utilized in the Bristow procedure; however, their graft was 

oriented in the manner of the Latarjet procedure (Wellmann et al., 2012). With this 

pseudo-Bristow coracoid transfer, the authors found increased glenohumeral translations 

which also agrees with our finding of reduced glenohumeral stiffness. The agreement of 

these results with previous literature, especially with regards to the Latarjet, lends support 

to our findings for both procedures.      

Limitations to this study include the use of cadaveric specimens, the need to utilize a 

donor coracoid for one repair, and the inability to test the unrepaired defect state prior to 

testing the reconstructions. The use of cadaveric specimens is an inherent limitation to 

this study and means that all results represent time-zero biomechanics without accounting 

for healing effects such as soft-tissue relaxation. Despite this limitation, this study 

provides a fair comparison of the two procedures. The use of a size matched coracoid 

donor with attached conjoint tendon is a limitation as it is possible that the donor graft 

may not have exactly matched the true coracoid; however, the use of the graft was 

randomized and balanced between specimens and thus any differences should affect both 

reconstructions equally. The use of successive glenoid defects precluded testing of the 

unrepaired state at each defect level as the specimen’s coracoid was removed at the first 

defect level; however, the primary goal of the study was to make comparisons to intact 

and between reconstructions and thus collection of these data was not imperative. It is 

anticipated that had these data been measured, they would have demonstrated 

progressively greater instability as observed clinically due to the loss first of the anterior 

passive stabilizers and subsequently portions of the anterior glenoid bone.  

This investigation has clarified the effects of the Bristow and Latarjet coracoid transfers 

and demonstrated that they are not equivalent, and should not be considered 

interchangeable when used to treat complex shoulder instability. Comparison has shown 

that the Latarjet coracoid transfer has a greater ability to restore glenohumeral joint 

stability. This restoration of stiffness will also help to normalize joint kinematics and 

kinetics by maintaining the joint in a well reduced configuration, preventing excessive 
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coracoid graft loading. Evaluation of the effects on ROM demonstrated that abducted 

axial rotation was significantly limited by both reconstructions. While this restriction is 

worrisome from a patient satisfaction point of view, it may prevent the joint from 

reaching the position of apprehension, which could subjectively cause proprioceptive 

feelings of instability despite improved stability.  However, for the Bristow, motion was 

restricted without effectively restoring intact joint stiffness and thus it carries the 

disadvantages of the Latarjet—motion restriction—without its benefits—joint 

stabilization. Further studies are required to determine if this restriction is clinically 

significant, and whether it remains over time or decreases with soft-tissue attenuation. 

In conclusion, through the use of the passive testing capability of the simulator, it was 

possible to clarify the effects of the two clinical procedures across a range of clinically 

meaningful injury levels and for various clinical assessments. Specifically, in the setting 

of anterior shoulder instability with an intact glenoid, the Bristow and Latarjet procedures 

are essentially equivalent in their ability to stabilize the shoulder.  However, the Latarjet 

results in significantly greater restriction of rotational range of motion indicating that the 

Bristow may be the preferred coracoid transfer procedure for isolated capsulolabral 

injuries.  In the setting of substantial glenoid deficiency, the Latarjet reconstruction is 

superior to the Bristow in its ability to restore joint stability and, therefore, in terms of its 

biomechanical efficacy, may represent a preferable treatment option among coracoid 

transfer procedures. 
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CHAPTER 5 – Development and Validation of a 
Multi-PID Muscle Loading Driven In-Vitro 
Active Motion Shoulder Simulator 

5 - 
OVERVIEW 

In-vitro active shoulder motion simulation can provide improved understanding of 

shoulder biomechanics; however, accurate simulator systems using advanced 

control theory have not been developed. Therefore, in this chapter, the development 

and validation of a simulator which uses real-time kinematic feedback and closed-

loop PID (Proportional, Integral, Differential) control to achieve active abduction 

and horizontal extension is presented. Motion control of cadaveric shoulder 

specimens was achieved by applying continuously variable loads to seven muscle 

groups. Muscle loads controlling each of the three rotational Degrees-of-Freedom 

(DOF) of the glenohumeral joint were modulated using three independent PID 

controllers running in parallel, each using Euler angle kinematic output 

corresponding to its DOF. The simulator achieved a mean error over repeated 

trials which was ≤1.7° across abduction and ≤2.2° across horizontal extension with 

Root Mean Squared Errors (RMSE) of 0.88° and 0.98°, respectively. The non-

profiled DOF were maintained to within 5.0 degrees with RMSE <1.0 degrees. 

Repeatability was high, with Average Standard Deviations (ASDs) of <0.31 

degrees. Therefore, this simulator is capable of accurately and repeatably 

controlling shoulder motion entirely through muscle loading which is critical to 

gaining a better understanding of shoulder function because glenohumeral 

kinematics are predominantly dictated by muscle loading8. 

8 A version of this work has been submitted for journal publication: Giles, J.W., Ferreira, L.M., Athwal, 
G.S., & Johnson, J.A. (In Submission Feb 2014). Development of a Novel In-vitro Shoulder Simulator for 
Real-Time Control of Active Movements in Various Planes. Journal of Biomechanical Engineering. 
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5.1 Introduction 
As discussed in Chapters 1 & 2, in-vitro simulators have been developed for a number of 

joints in the human body with the goal of accurately replicating in-vivo loading conditions 

and kinematics. Replicating the in-vivo condition has proven difficult, with simulators 

achieving varying levels of success. The accuracy of the replicated in-vivo condition can 

largely be related to the type of in-vitro testing being performed. While passive testing 

such as that described in Chapters 2-4 is a very important tool in assessing joint function 

it is incapable of quantifying the effects of differing joint conditions on shoulder 

kinematics and kinetics during muscle driven active motions. Additionally, the work of 

Kedgley et al. has shown that the implementation of a simulator which uses continually 

variable muscle forces to drive shoulder motion, as is the case in-vivo, can produce 

motions with higher repeatability than those performed passively (Kedgley, Mackenzie, 

Ferreira, Drosdowech, King, Faber, & Johnson, 2007a). This higher repeatability in turn 

increases the statistical power of the findings and their physiologic validity, as the 

kinetics of the joint are more closely replicated. A small number of systems have 

investigated the biomechanics of muscle loading driven, or ‘active,’ motion (Debski et al., 

1995; Henninger et al., 2012; Kedgley, Mackenzie, Ferreira, Johnson, & Faber, 2007; 

Wuelker, Wirth, Plitz, & Roetman, 1995). It is these active motion systems that enable 

the evaluation of joint kinematics and kinetics continuously across a given motion.  

To date, shoulder active motion systems have used constant middle deltoid velocity or 

linearly increasing middle deltoid force in conjunction with an open-loop controller, 

which apportions other muscle loads as a function of a-priori physiologic loading ratios. 

This control scheme has proven to produce repeatable motions in the primary degree of 

freedom (DOF) (i.e. abduction); however, their dependence on a-priori muscle loading 

ratios to maintain the desired elevation plane and level of axial rotation has precluded 

their ability to fully control all three rotational DOF. Control of these secondary DOF can 

be best achieved through the use of real-time kinematic feedback in a closed-loop control 

system. Additionally, implementation of this type of system would also enable simulation 

of motions such as horizontal extension that, unlike abduction, are not dictated by a one-

to-one muscle force profile function. As well, a system of this type would enable 
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simulation of motions that simultaneously vary two DOF, such as cross body motion.  

The lack of more refined shoulder simulators based on control theory can primarily be 

attributed to the complex, unconstrained nature of the shoulder and the number of degrees 

of freedom with large ranges of motion (e.g plane of abduction, abduction angle, and 

axial rotation) that must be controlled.   

Therefore, the objective of this chapter was to develop and test a new in-vitro shoulder 

motion simulator that uses real-time kinematic feedback and closed-loop PID 

(Proportional, Integral, Differential) control of all three rotational DOF simultaneously, to 

achieve active abduction and horizontal extension movements. These motions were 

selected as they represent the most common shoulder motion in daily life (Magermans, 

Chadwick, Veeger, & van der Helm, 2005) and the most unstable position for patients 

suffering from shoulder instability (Speer, Hannafin, Altchek, & Warren, 1994). A further 

objective was to refine the simulator’s kinematic and kinetic outcomes in order to gain an 

improved understanding of the effects of surgical procedures and implant designs on 

shoulder function. Therefore, in this chapter the simulator’s performance is evaluated 

based on its accuracy in following a predefined motion profile, its motion repeatability, 

its response to changes to the shoulder’s size-to-weight ratio and adjustments to the 

optimal PID control parameters, and its ability to compensate for non-physiologic 

disturbances in scapular rotation.  

5.2 Materials & Methods 

5.2.1 Specimen Preparation 

Two fresh frozen cadaveric shoulder specimens (81±0.7 years, both male) were transected 

mid-humerus and denuded of skin and sub-cutaneous tissue as described in Chapter 3. 

Prior to fixing the scapula to the active shoulder motion simulator (Figure 5.1), sutures 

were secured to the distal tendinous insertions of the Anterior, Middle, and Posterior 

Deltoid, as well as to the musculotendinous junctions of the Subscapular, Supraspinatus, 

and both the Infraspinatus and Teres Minor together. The instrumented intra-medullary 

humeral rod described in Chapter 2 was then cemented into the transected canal such that 
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a transverse reference bar was oriented parallel to the trans-epicondylar axis of the 

previously removed elbow (Balg, Boulianne, & Boileau, 2006). The instrumented rod 

served to provide real-time kinematic feedback regarding the humeral orientation as well 

as providing the ability to mount masses which simulated the weight and moment of 

inertia of the previously removed arm (Kedgley, Mackenzie, Ferreira, Drosdowech, King, 

Faber, & Johnson, 2007b).  

An optical tracking marker was also placed on the scapula in order to provide real-time 

kinematics feedback and provide a reference for the data collected from the humeral 

markers. The scapula was then cemented into a pot mounted to the simulator in 10° 

forward inclination while maintaining the glenoid plane vertical (Forte, de Castro, de 

Toledo, Ribeiro, & Loss, 2009; McClure, Michener, & Karduna, 2006). The sutures 

placed in each muscle group were then transitioned to low friction, low stretch polymer 

braided lines that, in order to achieve physiological lines-of-action, were routed through 

the custom low friction guide system and connected to the computer controlled low 

friction pneumatic actuators discussed in Chapter 2 (Airpel E16, Airpot Co., Norwalk, 

CT). Tissues were kept moist throughout testing using normal saline solution. 

In order to provide physiologically meaningful kinematic data for the control system, 

bone fixed local coordinate systems were created on the humerus and scapula using the 

International Society of Biomechanics (ISB) recommendations as described by Wu et al.
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Figure 5.1: Shoulder Active Motion Simulator.  
Photograph of the active motion simulator with a right shoulder mounted. Note the low friction pneumatic 
actuators (A), low friction cable guides (B), mass replacement system (C), optical trackers on the humerus and 
scapula (D), adjustable scapula pot which permits scapular elevation (E) and DC servomotor and linkage 
system which drives the scapula pot’s rotation (F). 

 

 



www.manaraa.com

145 

(Wu, van der Helm, Veeger, Makhsous, Van Roy, Anglin, Nagels, Karduna, McQuade, 

Wang, Werner, Buchholz, & International Society of Biomechanics, 2005a). Due to the 

previous transection of the humerus, the prescribed medial and lateral epicondylar 

digitizations were replaced with medial and lateral digitizations on the transverse bar, 

which was oriented parallel to the epicondylar axis. The required humeral head center 

digitization was determined using the algorithm of Woltring et al. applied to kinematic 

recordings of the humerus relative to the scapula with the glenohumeral joint intact 

(Woltring, 1990).  

5.2.2 Glenohumeral Joint Control System    

The present simulator’s control system was predicated on the use of previously validated 

in-vivo muscle loading ratios as an a-priori set of data to be modulated by a series of 

Closed-Loop PID controllers running in parallel. This would achieve real-time control of 

the glenohumeral joint’s three rotational DOF.  

5.2.2.1 A-Priori Muscle Loading Ratios 

A number of muscle loading ratio data sets exist in the literature. Some prescribe equal 

loads to all muscle groups (Apreleva et al., 1998; Debski et al., 1995), others consider the 

physiological cross-sectional area (pCSA) to apportion load based on muscle size (Halder 

et al., 2001; Itoi et al., 1994; Sharkey, Marder, & Hanson, 1994; Wuelker et al., 1995), 

and still others combine pCSA with electromyographic (EMG) activation data, averaged 

over a motion, to describe loading ratios based on the muscle’s capacity and behaviour 

during motion (Hsu, Luo, Cofield, & An, 1997). However, the most physiologically 

accurate set of ratios has come from the evaluation of pCSA, and EMG while it varies 

throughout a motion, rather than averaged over a motion (Kedgley, Mackenzie, Ferreira, 

Drosdowech, King, Faber, & Johnson, 2007b). In the literature, these data were only 

recorded for abduction in the scapular plane with neutral axial rotation, and as such, PID 

controllers are required to modulate these ratios, thereby allowing control of motions in 

other planes of elevation and levels of axial rotation (Table 5.1) (Kedgley, Mackenzie, 

Ferreira, Drosdowech, King, Faber, & Johnson, 2007b). 
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Table 5.1: Muscle Loading Ratios.  
This table illustrates the physiologic muscle loading ratios, at various levels of humeral abduction, utilized by 
the simulator to achieve accurate joint loading. These ratios are modulated by the PID controllers based on 
real time kinematic feedback. 
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5.2.2.2 Nested-Parallel Closed-Loop PID Controllers 

In designing the glenohumeral joint active motion control system, three inputs were 

identified: (1) the setpoints – target rotation angles for each of the three rotational DOF; 

(2) the process variables – the instantaneous joint angles taken from real-time kinematic 

data; and (3) the muscle loading ratios corresponding to the real-time abduction angle. 

The first input is defined as a desired motion profile or constant joint angle for the 

secondary DOF, and the third input is drawn from a-priori muscle loading ratio data. 

However, because the second input is drawn from real-time kinematic data, a custom 

LabView (National Instruments, Austin, TX) program was written to acquire humerus 

and scapula marker data from the Optotrak Certus and convert it to three joint rotations 

using the previously defined local bone coordinate systems and the ISB recommended 

YXY Euler angle rotation sequence (Wu, van der Helm, Veeger, Makhsous, Van Roy, 

Anglin, Nagels, Karduna, McQuade, Wang, Werner, Buchholz, & International Society 

of Biomechanics, 2005b). The output from this system is a load command for each 

muscle group. 

The three inputs allowed the control of the glenohumeral joint’s rotational DOF through 

independent PID controllers running in a combined cascade-parallel structure, each using 

one Euler angle rotation corresponding to its respective DOF (FGIURE). Each PID 

controller was configured to control the loading of an individual or set of muscles which, 

from previous in-vivo investigations, have been found to be primarily responsible for 

movement in the PID’s respective DOF.  

The three heads of the deltoid are the primary elevators of the shoulder in-vivo; therefore, 

the PID controlling abduction angle was configured to output the total deltoid force. This 

PID was considered the primary controller because its force output had to be sufficient to 

actively overcome the gravitational load of the arm during glenohumeral abduction, and 

to maintain the level of abduction during extension motions.   

The other two DOF were each controlled by an independent PID. These controllers ran in 

parallel to each other but cascaded below the primary abduction PID controller. The total  
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Figure 5.2: Block Diagram of Shoulder Active Motion Control System.  
The above block diagram illustrates the control algorithm implemented including the 
inputs, outputs, and intermediate data within the controller. Green arrows represent 
setpoints and real-time feedback; blue arrows represent a-priori muscle ratio data or 
intermediate output from PID controllers; red arrows represent load commands to be 
sent to actuators and in some cases to other parts of the controller.  
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force applied to the muscles controlling each of these two DOF was dictated by the sum 

of the physiologic ratios of each muscle forming the force couple (Plane of Abduction 

DOF: ∑Anterior and Posterior Deltoid, Axial Rotation DOF: ∑Subscapularis and 

Infraspinatus/Teres Minor) relative to the middle deltoid at the instantaneous abduction 

angle (Table 5.1). This total force was then redistributed between the muscles forming the 

force couple for each DOF using the corresponding Euler angle kinematics as the process 

variable for the PID controllers. These PID controllers output a ratio ranging from -0.95 

to +0.95 which was then multiplied by the total force determined earlier in order to 

redistribute the load between the muscles in the force couple. The output range was 

defined in this way to ensure that a minimum tone of 5% of the total load was maintained 

on both muscles. This method of using a-priori loading ratios ensured that the two 

secondary controllers did not apply non-physiologic forces while still leveraging the 

control provided by the PID algorithm to produce smooth accurate motion.  

Finally, the supraspinatus was actuated based on the magnitude of middle deltoid load, 

and its physiologic loading ratio with respect to the middle deltoid. This ratio varies with 

abduction angle since the supraspinatus functions as a primary abductor in early motion, 

with a decreasing role later on. The supraspinatus was the only muscle not directly 

controlled by a PID algorithm because while its primary function is to abduct, its role is 

secondary to that of the middle deltoid (Kedgley, Mackenzie, Ferreira, Drosdowech, 

King, Faber, & Johnson, 2007a).     

5.2.2.3 Control System Tuning 

Following implementation of the control system, a tuning procedure was undertaken for 

each of the three PIDs controlling an individual DOF. Each PID was tuned for two 

distinct forms of operation: (1) to follow a smooth predefined motion profile; and (2) to 

maintain a constant rotation angle when a predefined motion profile is being followed in 

another DOF (e.g. maintaining an axial rotation angle during an abduction motion). The 

abduction PID – the primary controller – was tuned first, since its output cascades to the 

others. The secondary PIDs were then tuned, and a heuristic process was applied to the 

primary PID to account for any effect this secondary PID tuning had on its performance.  
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The initial tuning procedure undertaken for the primary and secondary DOF followed the 

Ziegler–Nichols method (Ziegler & Nichols, 1942); first, a proportional only controller is 

implemented, then its gain is increased until oscillation is initiated (Ku). 45% of this gain 

is then used to achieve a desirable Quarter Amplitude Decay Response (Kp). The 

estimated oscillation period (Tu) from the first step was then used to select an initial 

integral time value (inverse action of gain) (Ti) using the formula:  

𝑇𝑖 = 0.83
𝑇𝑢
𝐾𝑝

 

Equation 5.1: Ziegler-Nichols equations for determination of Integral Time 
PID parameter initial guess. 

Eq. 5.1 

 

The derivative time (Td) was then increased from zero in a heuristic manner until the 

resulting profile was sufficiently responsive. Through these tuning procedures, it was 

determined that the optimal PID gains required for following an abduction profile and for 

maintaining a constant abduction level were equal. This was also the case for the plane of 

elevation PID controller (Table 5.2). However, for controlling internal-external rotation, 

the tuning procedures produced two different sets of gains (Table 5.2). An example of the 

continuously variable muscle loads produced by this tuned control system can be seen in  

Figure 5.2. 

5.2.3 Scapular Orientation Control 

In order to accurately replicate in-vivo glenohumeral joint stability and kinematics, it is 

necessary to not only control the forces applied to the muscles crossing the joint, but also 

to mimic the glenohumeral-to-scapulothoracic rhythm by controlling the scapula’s 

rotation. This rotation was calculated by applying McQuade et al.’s (McQuade & Smidt, 

1998) rhythm to the instantaneous glenohumeral abduction angle.  The scapula was then 

rotated to the required orientation by rotating its pot using a DC servo-motor and linkage 

system controlled using a custom Labview program designed to convert the scapular 

orientation into a motor position. This conversion was achieved by applying the results of 

an inverse kinematic analysis of the scapula pot and linkage system to the known motor 

and gearhead rotation ratios (Appendix B ). As discussed in the description of the design 

of the physical scapula rotation mechanism in Chapter 2 (Section 2.2.3), scapular  
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Table 5.2: PID Control Parameters.  
This table provides the PID gains implemented for each of the DOFs when attempting to 
follow a desired motion profile or maintain a constant value. Note that only the Internal-
External rotation DOF required distinct PID parameters for the two control cases. 
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Figure 5.3: Example Muscle Loads Produced by Motion Controller. 
This graph illustrates a set of example muscle loads produced by the tuned closed loop 
control system during abduction in the scapular plane for an intact shoulder specimen. 
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protraction/retraction was not controlled by this system as it does not affect glenohumeral 

joint stability, and scapular tilting was not adjusted because there is currently no clear 

definition of how this DOF changes with humeral motion. 

5.2.4 Validation Outcome Variables 

The efficacy and performance of the simulator were evaluated using a number of outcome 

variables. First, the accuracy in following a predefined motion profile was assessed for 

abduction in the scapular plane and for horizontal extension after the humerus was 

actively abducted to 60° of glenohumeral rotation, 30° of scapulothoracic rotation and 

externally rotated 60°. In this assessment, the accuracy of the resulting motion profile was 

evaluated as well as how well the non-profiled DOF (e.g. axial rotation and plane of 

elevation for an abduction motion) were maintained with respect to their predefined 

target. These assessments were quantified in terms of the Root Mean Squared Error 

(RMSE). Second, the repeatability of the system to follow these profiles was assessed by 

calculating the standard deviation over three repeated trials at each joint angle, and 

averaging these across the entire motion profile (average standard deviation, ASD). 

Changes in arm mass replacement were made to simulate varying mass-to-anthropometric 

size characteristics among specimens. A third outcome was the assessment of the control 

system’s characteristics in response to these changes. Specifically, arm mass replacement 

was tested at 60 and 140% of the physiologic mass replacement level for abduction in the 

scapular plane. Horizontal extension was not assessed as variations in mass were not 

expected to markedly affect horizontal extension. In order to assess the accuracy and 

repeatability of the controller for these varying mass levels, the RMS Error (RMSE) and 

average standard deviation (ASD) over three trials was determined.  

The fourth outcome was an assessment of the controller’s response to systematic changes 

in PID gain values and of how closely it replicates a classical closed loop control system. 

For abduction profiling, the systematic PID gain variation procedure first involved 

eliminating the integral time (inverse action of gain) and increasing proportional gain to 

the point of instability and oscillation. This was followed by restoration of the gains from 

the previously tuned (i.e. optimal) PID controller and subsequent systematic increases and 
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decreases in the integral time to the point of a slow overdamped response or an unstable 

underdamped response, respectively. This integral time variation procedure was 

performed for the controllers responsible for abduction and horizontal extension profiling. 

The procedure was performed for all three mass replacement levels; however, only the 

physiologic mass replacement level will be presented.  

A final outcome was the system’s ability to reject disturbances. This outcome was 

considered important due to the concurrent motion of the scapula which could affect 

control of glenohumeral motions. Disturbance rejection was assessed in terms of the size 

of disturbance in glenohumeral abduction and the time required to reject the disturbance 

when a non-physiologic scapular rotation was introduced. A disturbance of 23° of 

scapular rotation was applied while commanding the controller to maintain a constant 

glenohumeral rotation. The 23° disturbance was chosen since it would force the controller 

to compensate for large changes in the humeral gravity load. Changes in glenohumeral 

rotation were recorded throughout the test. 

5.3 Results 

5.3.1 Performance 

Accuracy of the active motion simulator was found to be quite high with mean 

differences to the desired motion profile never greater than 1.7° for abduction and 2.2° for 

horizontal extension with Root Mean Squared (RMS) Error of 0.88° and 0.98°, 

respectively (Figure 5.3). Additionally, the non-profiled DOF were maintained to within 

2.5° during abduction and 5.0° during horizontal extension each with an RMSE of <1.0°. 

Repeatability was found to be high with average standard deviations (ASDs) of 0.31° for 

abduction and 0.30° for horizontal extension while the maximum standard deviation at 

any instant in time during profiling never exceeded 0.84° for either motion over three 

trials (Figure 5.3). As well, repeatability for the non-profiled DOF averaged <0.5° across 

the entire motion.  
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5.3.2 Control System Characterization 

There was little change in the control system’s performance between any of the arm mass 

replacement levels (60, 100, 140 %BW). Specifically, with optimal PID parameters, it 

was found that for abduction, the RMSE and ASD for the three mass replacement levels 

were all similar (60%: 0.73° & 0.14°, 100%: 0.87° & 0.22°, 140%: 1.04° & 0.25°) 

(Figure 5.4). 

The assessment of changes in proportional gain with no integral time value demonstrated 

that the abduction controller will yield a large steady state error of approximately 66% 

below the target value when using the gain value from the ‘optimal’ PID controller. This 

steady state error is decreased through increases in the proportional gain (Figure 5.5a); 

however, before the response reaches the target level, the system becomes unstable and 

oscillatory. 

When increasing the integral time (i.e. decreasing integral gain) for abduction, the ability 

of the controller to follow the desired motion profile became progressively worse until the 

response was considered excessively slow and overdamped (integral time = 7x ‘optimal’ 

value) (Figure 5.5b). However, before this overdamped response was achieved, the 

system produced motions which lagged the setpoint profile, overshot the final target, and 

were slow to settle for integral times of 2-4x the ‘optimal’ value. During horizontal 

extension profiling, increasing the integral time value had little effect on the early stages 

of motion beyond slightly slowing the response; however, all of the attempted values of 

integration below the ‘optimal’ value resulted in unstable responses as the motion profile 

approached its completion (Figure 5.5c).    

The effect of decreasing the integral time constant (i.e. increasing the integral gain) was 

characterized for abduction. The produced motion exhibited small increases in oscillation 

when integral time was decreased by 10 to 30%, but these oscillations remained small and 

centred on the setpoint profile (Figure 5.5d). However, when a 50% reduction in the 

integral time was applied, the prominence of oscillations increased markedly and these 

increased in amplitude as the motion progressed. Decreases in the integral time of the 

horizontal extension PID controller resulted in similar oscillatory behaviour to that of the  
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Figure 5.4: Abduction & Horizontal Extension Profiling Accuracy and 
Repeatability.  
(Top) This graph illustrates the accuracy of the active motion simulator in following a 
predefined motion profile consisting of abduction in the scapular plane. The profile 
begins at the resting position (~10°) and ends with the arm parallel to the ground. 
(Bottom) This graph illustrates the accuracy of the active motion simulator in following a 
predefined motion profile consisting of horizontal extension with the arm parallel to the 
ground and externally rotated. The profile begins with the humerus in the scapular plane 
and ends 35° posterior to that plane. Note the ‘Difference’ series which is plotted on the 
secondary axis and is the difference between the profile and resulting motion. Also note 
the thin black standard deviation lines throughout the motion which demonstrate the high 
repeatability of the system. 
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Figure 5.5: Effect of Variations in Specimen’s Size-to-Mass Ratio.  
This graph illustrates the simulator’s response to a ±40% change in the specimen’s mass 
which is used to replicate subjects with varying size-to-mass ratios. The dashed lines 
represent the respective setpoint profiles for this abduction motion while the solid lines 
are the resulting motions. 
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Figure 5.6: Effect of Varying Proportional and Integral Gains on Controller 
Characteristics.  
(a) This graph demonstrates the response of a Proportional only controller and how this 
response varies with increasing gain values during abduction in the scapular plane. 
Graphs (b) and (c) demonstrate the effects of increasing the Integral time component of 
the ‘optimal’ PID controller during abduction in the scapular plane and horizontal 
extension, respectively. Similarly, graphs (d) and (e) demonstrate the effects of 
decreasing Integral time during abduction and horizontal extension, respectively. 
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abduction controller early in the motion profile, whereby oscillations were centred about 

the setpoint profile (Figure 5.5e). However, unlike the abduction controller, these 

oscillations were damped out for all decreases in integral time (10-50%) as the motion 

progressed. This dampening, however, was overcome near the end of the motion when all 

reductions in integral time resulted in instability that increased in magnitude as the effect 

of integration was increased. 

The control system’s ability to reject disturbances was assessed and it was found that the 

system was able to maintain the joint angle to within 4.8° of the desired level of 

abduction during the application of a non-physiologic scapular rotation (Figure 5.6). 

Additionally, the control system was capable of rejecting this disturbance and settle back 

to the desired abduction level within 3 seconds. 

5.4 Discussion 
In the past, in-vitro shoulder simulation has largely involved static assessments of 

shoulder stability and evaluation of motions passively applied by the experimenter while 

constant muscle loads were applied. However, the highly unconstrained nature of the 

glenohumeral joint is such that its kinematics are predominantly dictated by muscle 

loading and thus accurate replication of in-vivo muscle loading patterns is critical to the 

control of the shoulder’s three rotational degrees of freedom. It is for this reason that we 

believe the implementation of real-time kinematic feedback and a closed-loop control 

system is critical to improving the physiological accuracy of simulated shoulder 

kinematics and kinetics. By refining these outcomes, we can gain an improved 

understanding of the effects of surgical procedures and implant designs on shoulder 

function. It was with this in mind that we developed and worked to validate the 

repeatability and physiologic accuracy of the simulator presented. 

The primary measures of an active motion simulator’s performance have traditionally 

been their accuracy in achieving a desired orientation and their repeatability in doing so. 

Our results indicate that this simulator, which is the first to use closed-loop control theory 

to produce smooth glenohumeral motion, is capable of accurately controlling abduction  
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Figure 5.7: Simulator’s Response to Scapular Disturbance.  
This graph demonstrates the ability of the simulator’s control system to minimize the 
effect of disturbances, in the form of a non-physiologic scapular rotation, and quickly 
reject any disturbance which does occur in the glenohumeral orientation. Note that the 
Disturbance series of data is plotted on the secondary axis. 
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and extension motions, with a high degree of repeatability, while maintaining predefined 

physiologic orientations in the two remaining degrees of freedom. The simulator’s 

accuracy in following a desired motion profile can be characterized by an RMSE over the 

entire motion of 0.88° for abduction and 0.98° for horizontal extension. It is difficult to 

compare this accuracy to previous reports (Debski et al., 1995; Kedgley, Mackenzie, 

Ferreira, Drosdowech, King, Faber, & Johnson, 2007a) which only discussed an 

apparatus’ ability to achieve a desired final orientation (mean error: 0.1-2.3°) but as 

demonstrated by Figure 5.3 A&B the PID action of our system ensures that all steady 

state error is eliminated at the final orientation. The accuracy of the system in controlling 

the non-profiled DOF was also excellent with an RMSE of <1.0°.  

The system’s repeatability was found to be very high with standard deviations averaged 

across the profile of ~0.3° for both motions. Again, comparisons of our repeatability 

across an entire motion to that of final orientation repeatability, which one would expect 

to be the highest possible throughout motion, are difficult; however, our results of ~0.3° 

compares well to that of Debski et al. who reported a repeatability of 1.0° (Debski et al., 

1995). In terms of the repeatability of the non-profiled DOFs during a given motion 

profile, our result of average standard deviations of <0.5° compares well to the 2.0° report 

by Kedgley et al. who performed repeated trials using predefined load levels (Kedgley, 

Mackenzie, Ferreira, Drosdowech, King, Faber, & Johnson, 2007a). 

In addition to traditional measures of performance, the simulator’s characteristics were 

evaluated for various specimen conditions and variations in controller parameters in order 

to assess the effect on the closed loop control system’s output. The first of these was 

determining the effect of variations in the ratio between the specimen’s anthropometric 

size and the simulated weight, which was varied using masses attached to the 

intramedullary humeral rod. This was intended to evaluate the simulator’s stability among 

specimens from donors of variable Body Mass Index (BMI). It was found that changes in 

the simulator’s performance in response to adjustments of up to ±40% of the physiologic 

level of mass replacement were negligible (ΔRMSE=0.3°) but that performance did 

improve slightly with lower masses and declined with greater masses. Therefore, the 
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simulator’s control system has been found to be sufficiently robust and stable as to not 

require adjustments to its parameters when specimens with varying anthropometric mass 

and size characteristics are tested using our current quasi-static motions. This robustness 

has been confirmed over the range of ±40% of the average adult male; however, it is 

conceivable that specimens exhibiting extreme size or mass characteristics may require 

adjustment to the control system’s parameters. It has also been found that controller 

parameters do require adjustment when testing conditions in which the joint’s geometry 

and/or function have been significantly altered such as the case of replacing native 

anatomy with a Reverse Total Shoulder Arthroplasty which inverts the glenohumeral ball 

and socket articulation.    

From the assessment of the simulator’s response to changes in the PID control parameters 

a number of conclusions can be drawn. First, when assessing the effect of a proportional 

controller with no integral effect, the proportional gain of the optimal controller was 

found to be insufficient to achieve the desired level of abduction and no increase in this 

gain would achieve the desired rotation at the rate of motion required without first 

causing unstable oscillations. Second, when assessing the effects of increasing the 

integral time (decreasing the integral gain) it was found that the response differed 

between abduction motions and horizontal extension motions. During abduction, it was 

found that it is possible to avoid any level of overshoot by increasing integral time; 

however, this requires a minimum 500% increase in integral time and slows the response 

by several seconds over the course of a full motion. As seen in Figure 5.5b, this 

overdamped motion in fact produced the smoothest and likely the most repeatable motion 

but at the expense of accurately following the desired profile. It can be argued that 

following the desired profile is of secondary importance to achieving optimal 

repeatability. However, this objective was not pursued as future work in simultaneously 

simulating multiple rotations would demand that the desired profile in each rotation be 

accurately followed, thus necessitating a controller tuned to minimize error.   

During horizontal extension, attempts to create an overdamped response by increasing the 

integral time had little effect in the early stages of motion but initiated instability as the 

motion approached its end point. It is possible that this instability is related to the 
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decreased speed of the humerus, compared to that which occurs using the optimal 

parameters, which would cause error accumulation and rapid increases in load leading to 

oscillation. Third, when assessing the effects of decreasing the integral time (increasing 

the integral gain) it was found that two motions produced similar results in the early and 

late stages of motion whereby any decrease in the integral time ≥10% resulted in a motion 

pathway which oscillated about the setpoint as abduction progressed and eventually lead 

to unstable oscillations. However, in the case of horizontal extension, during the mid-

range of motion these oscillations were dampened to the point of being nearly eliminated. 

It is possible that this dampening can be related to the greater effect of passive 

ligamentous restraint associated with the shoulder being positioned in 60° of humero-

scapular abduction and most especially the effect of the Middle Glenohumeral Ligament 

which would tighten as the arm is extended. However, this dampening effect appears to 

be overcome as the shoulder reaches its most unstable position and the increased 

Integration effect becomes dominant. 

Overall, the assessment of the simulator’s response to changes in the closed loop control 

systems parameters has demonstrated that the system does largely replicate the 

characteristics of a classical control system whereby increases in proportional or integral 

gain cause an unstable underdamped response, while decreases cause a slow overdamped 

response and steady state errors. However, these expected responses are augmented by 

the variable effects of ligamentous tissues and bony impingement.  

The simulator’s ability to reject disturbances in scapular rotation was found to be quite 

robust in that the system only permitted a 4.8° change in glenohumeral orientation in 

response to a non-physiologic scapular rotation much larger than would be seen during 

testing. Additionally, the response to this disturbance was rejected within three seconds 

indicating that in the event that a disturbance is introduced, the resulting glenohumeral 

kinematics can be expected to closely replicate those produced during an undisturbed 

trial.      

Despite the high levels of accuracy and repeatability, the simulator’s physiologic 

accuracy has a number of limitations. First, the simulator is currently unable to accurately 
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replicate high velocity motions such as throwing due to the speed at which the controller 

would be required to react, and the added complexity of dynamic accelerations and 

inertia. However, we believe that the biomechanics associated with daily motions can 

largely be considered quasi-static. A second limitation of the simulator is its inability to 

actively control plane of elevation and axial rotation when the arm is below ~15° of 

abduction. This lack of control is an unavoidable result of using an Euler angle sequence 

which results in gimbal lock between these two rotations when the arm was adducted. As 

a result the error between the desired plane of elevation and axial rotation in these first 

15° could be up to 5° as presented in the results. However, since these data were 

recorded, a shoulder joint decomposition algorithm, of the type described by Grood and 

Suntay for other joints, has been implemented as described by Amadi et al. (Amadi & 

Bull, 2010; Grood & Suntay, 1983). A description and validation of the use of this new 

decomposition method can be found in Appendix C. With this new method implemented, 

the lack of control during early abduction that was observed in this chapter and which led 

to large errors has now been eliminated. A third limitation relates to the single 

glenohumeral-to-scapulothoracic rhythm utilized in this investigation. Throughout this 

study a traditional 2:1 ratio was used despite more recent evidence that it may vary across 

abduction with the scapula producing a greater portion of the arm’s overall rotation late in 

the arc of motion (McClure et al., 2001). Finally, although this evaluation was able to 

clarify the system’s capabilities, an analytical model using concepts from Multiple Input 

Multiple Output control (for the multiple joint angle inputs and multiple muscles load 

outputs) and wire driven robots (Nazari & Notash, 2013) should be performed to ensure 

that the results of this chapter are in agreement with these widely validated methods.     

In conclusion, the data presented in this chapter have demonstrated that the current 

simulator is capable of accurately replicating one of the most common motions of daily 

life – abduction – as well as the motion which commonly initiates instability – horizontal 

extension in abduction external rotation. The simulator has also demonstrated the ability 

to perform these motions with a repeatability as high as or higher than previously reported 

simulators. Additionally, the current simulator is the first to simultaneously control all 

three rotational degrees of freedom of the shoulder while also applying physiologically 
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accurate scapular rotations based on the instantaneous glenohumeral orientation. Finally, 

the simulator has moved away from heuristically defined muscle loading in favour of a 

closed loop PID control system, which we believe will more closely replicate in-vivo 

muscle loading and thus joint kinetics. With all of these factors in mind, the true strength 

of this control system, which uses three parallel PIDs, lies in its ability to perform 

motions that combine profiles in multiple DOF, such as cross body motions, where it 

would be extremely difficult to choose loads heuristically. As well, it is believed that this 

novel simulator produces an environment representative of physiological loading and is 

capable of providing new insight into shoulder biomechanics during normal and 

dysfunctional joint conditions. 
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5.5 Nomenclature 
 

PID Proportional, Integral, Differential controller 

RMSE Root Mean Square Error 

ASD Average Standard Deviation 

Ku Proportional gain causing oscillation in a proportional only controller 

Kp Proportional gain in proportional only controller causing a Quarter 

Amplitude Decay Response 

Tu Estimated oscillation period 

Ti Initial integral time value 

Td Initial derivative time value 
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CHAPTER 6 – The Influence of Reverse Total 
Shoulder Arthroplasty Implant Geometric 
Variables on Muscle Activation, Joint Load 
and Shoulder Function 

6 -  
OVERVIEW 

This chapter presents application of the newly developed passive and active 

simulator (as described in Chapters 2 & 5) functionality to the investigation of 

Reverse Total Shoulder Arthroplasty (RTSA). Use of these two sets of functionality 

enabled a more comprehensive assessment of the RTSA’s effect. The configuration 

of RTSA implants is defined by a large number of parameters, but there is little 

information about the effects of each of these variables on post-operative shoulder 

function and loading. Therefore, we investigated the effects of three common 

parameters (humeral offset, humeral poly cup thickness, and glenoid offset) on 

active internal and external rotational range of motion, and on joint and deltoid 

muscle loading during active abduction. Humeral offset improved external rotation 

(p=0.003) and deltoid loading (p=0.004), and had no effect on joint loading. 

Humeral polyethylene cup thickness on the other hand, had no effect on external 

rotation but increased joint load and deltoid load (p≤0.012). Glenosphere offset 

improved external rotation but worsened joint load and deltoid load (p≤0.002). 

These results indicated that by using the methods developed in this thesis it has 

been possible to provide new insights into RTSA function; specifically, that humeral 

offset has the most positive effects on both shoulder function and loading. 
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6.1 Introduction 
Reverse total shoulder arthroplasty (RTSA) has become an accepted option for the 

treatment of pseudoparalysis due to severe rotator cuff deficiency (Drake, 2010; Ek, 

Neukom, Catanzaro, & Gerber, 2013; Leung, Horodyski, Struk, & Wright, 2012; Nolan 

& Ankerson, 2011), as a salvage procedure following failed primary total shoulder 

arthroplasty (Castagna et al., 2013; Flury, Frey, Goldhahn, Schwyzer, & Simmen, 2011; 

Ortmaier et al., 2013; Werner, Boehm, & Gohlke, 2013), and as an alternative to hemi-

arthroplasty in cases of severely comminuted proximal humeral fractures (Acevedo, 

VanBeek, Lazarus, Williams, & Abboud, 2014; Anakwenze, Zoller, Ahmad, & Levine, 

2014; Bufquin, Hersan, Hubert, & Massin, 2007; Cuff & Pupello, 2013; Mata-Fink, 

Meinke, Jones, Kim, & Bell, 2013). Boguski et al. found in a review of 100 hospitals that 

RTSAs represented nearly 50% of all total shoulder arthroplasties performed in 2012 

(Boguski, Miller, Carpenter, Mendenhall, & Hughes, 2013). Despite the widespread use 

of this procedure, there remains a paucity of information in the literature about the effects 

of specific RTSA implant parameters on biomechanical variables such as range of 

motion, joint and muscle loading, and strength.  

Range of motion and strength have been investigated clinically by a number of authors 

(Boileau et al., 2006; Boileau, Watkinson, Hatzidakis, & Hovorka, 2006; Cuff, Pupello, 

Virani, Levy, & Frankle, 2008; Ek et al., 2013; Lenarz, Shishani, McCrum, Nowinski, & 

Gobezie, 2011). Results from these authors have all shown improvements in active 

abduction post-operatively, but only the results of Cuff et al. (2008) demonstrated a 

statistically significant improvement in active external rotation. The theoretical ranges of 

motion for various implant configurations have also been investigated using computer 

based solid models that use implant-bone impingement as the end points of motion 

(Gutierrez, Levy, Lee, Keller, & Maitland, 2007; Gutiérrez, ComiskeyIV, Luo, Pupello, 

& Frankle, 2008; Gutiérrez, Luo, Levy, & Frankle, 2009). However, these models have 

been unable to account for the effect of soft tissues and for the level of motion achievable 

through active muscle contraction. With respect to the muscle loads required to produce 

motion and the resulting joint loading, data in the literature are confined to computational 

models and a few in-vitro studies that investigate a small number of implant 
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configurations (Gutierrez, Walker, Willis, Pupello, & Frankle, 2011; H. B. Henninger, 

King, Tashjian, & Burks, 2013; H. B. Henninger et al., 2012; Kontaxis & Johnson, 2009; 

Nigro, Gutiérrez, & Frankle, 2013). Despite the information provided by these 

investigations, there remains a lack of comparisons between the effect of differing 

implant designs and more specifically, of the effect of the varying geometrical parameters 

underlying these components. 

Therefore, the purpose of this investigation was to evaluate the effects of glenosphere and 

humeral component design parameters on shoulder ranges of motion, external rotation 

strength, resultant joint load, and total deltoid force required to achieve active abduction. 

The component parameters examined were glenosphere lateral offset, humeral 

polyethylene thickness, and lateral offset between the humeral cup and the humeral stem. 

To allow the assessment of levels of these variables beyond those currently achievable 

using commercially available systems, a custom adjustable implant system was designed. 

The glenoid components of this system were instrumented with a load sensing device to 

assess joint loading, and a custom active motion shoulder simulator was used to enable 

muscle loading driven assessments. For the above mentioned implant parameters, we 

hypothesized that glenosphere lateralization would increase the external rotation range of 

motion but would result in greater total deltoid force and increased joint loading. 

Conversely, we hypothesized that lateralizing the humerus would decrease the demands 

on the deltoid and reduce joint loads, whereas increasing the thickness of the humeral 

component would have little effect on deltoid and joint loading.  

6.2 Materials & Methods     

6.2.1 Custom Adjustable & Instrumented RTSA System 

In order to assess a full range of RTSA geometric parameters beyond those achievable 

using the limited configuration options of any one commercial implant, custom humeral 

and scapular components were designed with multiple levels of adjustability for a number 

of variables (Figure 6.1). The custom scapular components were designed to 

accommodate a load sensor so that loads transmitted through the joint could be measured.  
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In this study, the implant variables of interest were glenosphere lateralization, humeral 

polyethylene cup thickness, and humeral cup medialization, which results in humeral 

lateralization; however, the custom implants were also designed for use with 

interchangeable glenosphere/humeral cup sizes, and allowed for the adjustability of 

glenosphere inferiorization, humeral head-neck angle, and humeral cup anteversion-

retroversion. Glenosphere lateralization – also referred to as glenosphere offset – was 

evaluated at 0, 5, and 10mm, where 0mm represents a clinically neutral configuration 

when the base of the glenosphere is flush with the reamed glenoid surface. Humeral 

polyethylene cup thickness was tested at 0, 3, and 6mm, where 0mm corresponds to a 

clinically neutral configuration with the underside of the humeral cup’s superior rim in 

line with the level of the anatomic neck. Humeral cup medialization, henceforth called 

‘humeral offset,’ was assessed at 0, 5, and 10mm where, 0 mm corresponds to a clinically 

neutral configuration with the deepest point of the humeral cup being 12.5 mm medial to 

the long axis of the humeral shaft. Throughout this study, the remainder of the pertinent 

geometric parameters were held constant as follows: glenosphere/humeral cup size = 

38mm, glenosphere inferiorization = 0 mm, humeral head-neck angle = 155°, humeral 

cup retroversion = 0° (note: see specimen preparation section for description of neutral 

implantation orientation). 

6.2.1.1 Humeral Components 

A commercially available polyethylene humeral cup (Delta XTEND, Depuy, Warsaw, 

IN) with a +3mm polyethylene cup thickness was used, and modified, in order to 

eliminate the possibility of our results being confounded by a custom component’s 

differing material properties and surface finish. The humeral implant system (Figure 6.2) 

was also composed of a head-neck component, and humeral baseplate and stem that 

enabled offset and retroversion adjustments. The head-neck component (Figure 6.2C) 

could be interchanged to achieve differing head-neck angles and was also designed to 

permit the humeral cup (Figure 6.2A) to be threaded on with or without 3mm spacers 

interposed (Figure 6.2B). By interposing spacers, the polyethylene cup thickness could be 

effectively adjusted. In this study, zero, one, or two 3mm spacers were used. Prior to  

   

 



www.manaraa.com

174 

 

 

 

 

 
 
Figure 6.1: Custom modular Reverse Total Shoulder Arthroplasty implants. 
Photograph showing the humeral and scapular components including the six degree of 
freedom load cell interposed between the glenosphere and baseplate.  
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Figure 6.2: Custom modular humeral implant of our Reverse Total Shoulder Arthroplasty.  
Top view of humeral stem and side view of assembled implant (left), isometric view of assembled implant 
(middle), and isometric exploded view (right). (A) Depuy Delta XTEND +3mm humeral cup, (B) 3mm humeral 
polyethylene cup thickness spacer (also  0 & 6mm), (C) 155° head-neck angle component (also 135° & 145°), 
(D) humeral stem and baseplate for cup adjustability, (E) retroversion dowel holes spaced at 5° (0-20°), and 
(F) threaded holes for medialization spaced at 5mm (-5 to +15mm). 
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attaching the humeral cup, the head-neck component could be fixed to humeral stem 

(Figure 6.2D) using a recessed bolt and locating pin. The bolt could be threaded into any 

of five holes spaced 5mm apart (Figure 6.2F) which corresponded to -5, 0, 5, 10, and 

15mm of cup medialization (i.e humeral offset), where the 0mm hole is collinear with the 

implant stem. Additionally, at each of the five humeral offset levels, the locating pin 

could be placed into any of 9 holes spaced at 5° increments (Figure 6.2E) in order to 

achieve humeral retroversion of ±20° relative to the implant orientation. The humeral 

stem extended 35mm inferior to the humeral baseplate with a tapering cross-shaped cross-

section to achieve maximum fixation stability. The full range of adjustability permitted by 

the custom modular implants is illustrated in Appendix D.         

6.2.1.2 Scapular Components 

Unlike the humeral cup, a corresponding commercially available glenosphere component 

was not used, as modifications to its fixation method were required. However, the custom 

glenosphere’s articulating geometry mirrored the glenosphere component of the Depuy 

Delta XTEND humeral cup that was used. The articulating surface of the custom 

glenosphere was machined and polished to a finish equivalent to that of the commercial 

implant (Figure 6.3D). A commercially available six degrees of freedom (DOF) load cell 

(Nano 25, ATI-IA, Apex, NC) was interposed between the glenosphere and its underlying 

baseplate (Figure 6.3B) to measure loads passing through the RTSA (Appendix E). Use 

of this load cell permitted the full description of the joint loads and their transformation 

into any relevant coordinate system. The load cell’s 22mm thickness precluded it from 

being interposed between the glenosphere and baseplate without affecting the component 

designs and surgical technique. Neutral glenosphere positioning was therefore achieved 

through modification of the glenosphere’s undersurface and the implantation procedure. 

The base of the hemispherical glenosphere was machined to create a 10mm deep 

cylindrical pocket that would accommodate the load cell. The remaining 12mm load cell 

thickness and an additional 3mm of glenosphere baseplate thickness, which protruded 

beyond the glenosphere base, were accommodated by creating a 1” diameter, 15mm deep 

flat bottomed hole in the glenoid vault. The glenosphere baseplate (Figure 6.3A) was 
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Figure 6.3: Custom modular scapular implant of our Reverse Total Shoulder Arthroplasty.  
Isometric view of assembled glenosphere components (top), isometric exploded view (middle), and reverse 
angle of isometric exploded view (bottom). (A) glenosphere baseplate, (B) six DOF load cell, (C) 5mm (also  0 
& 10mm) glenosphere lateralization spacer, and (D) custom glenosphere component with hollowed out base. 
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fixed in the glenoid vault using three 4.5mm screws and allowed the load cell to be mated 

using a tight push fit achieved using multiple locating pins. This allowed the sensor to be 

removed as required while maintaining rigid fixation during testing. This component 

setup – baseplate-load cell-glenosphere – corresponds to the 0mm glenosphere offset 

configuration while 5mm spacers could be further interposed between the load cell and 

glenosphere to achieve 5 and 10 mm offset configurations.      

6.2.2 Specimen Preparation 

Seven fresh-frozen cadaveric shoulders (71±10 years) free of rotator cuff deficiency, 

osteoarthritic changes, and prior surgery, were used in this study. The humerus was 

transected mid-shaft and minimally dissected to identify the deltoid insertion and rotator 

cuff muscles. The deltoid muscle was sharply resected from its humeral insertion to 

visualize the subacromial space. A full thickness tear was then created at the 

supraspinatus’ insertion on the greater tuberosity. Next, the subscapularis was elevated 

from the subscapular fossa and reflected laterally in order to allow clear access to the 

glenohumeral joint both during implantation and implant configuration changes 

throughout testing. 

Implantation of the custom RTSA was performed using the method described by the 

Depuy product manual with small modifications to accommodate the custom 

components. One modification that was required in some specimens was the removal of a 

small portion of the medial anatomic neck beyond the level of the traditional humeral 

head resection. This was done to permit full adjustability of the humeral implant. The 

humeral component, assembled in its neutral configuration, was then cemented in place as 

described in the implant design section. It was placed in the standard RTSA position of 0° 

humeral cup retroversion relative to the epicondyles and such that its superior rim was 

level with the superior anatomic neck (Figure 6.4). To implant the scapular components, 

the labrum was first resected from 3 to 9 o’clock and the glenoid face was lightly reamed. 

A guide pin was then placed in the glenoid so that the inferior edge of the glenosphere 

baseplate would coincide with the inferior glenoid (Figure 6.5). In order to accommodate  
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Figure 6.4: Photograph of implanted humeral component. 
Photograph illustrating the positioning of the humeral implant relative to the intact 
humeral head anatomy. 
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Figure 6.5: Photographs of glenosphere implantation.  
Top, photograph taken during fixation of the glenosphere baseplate, demonstrating the 
flat bottomed hole created in the glenoid; bottom, photograph taken following attachment 
of the load cell and glenosphere showing the glenosphere in neutral lateralization with its 
inferior edge just lateral to the intact glenoid rim. 
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the interposed six DOF load cell, a 1” diameter flat bottomed, cannulated drill bit was 

then used to bore a 15mm deep hole in the glenoid using the previously placed pin as a 

guide. Using this hole depth ensured that when the glenosphere-load cell construct was 

placed on the baseplate, the glenosphere would be located in a neutral position. Once this 

hole was created, the custom baseplate was secured using three 4.5 mm screws. The 

glenosphere-load cell construct could then be attached and removed from the baseplate 

throughout testing as needed. 

With implantation complete, the deltoid and rotator cuff tendons were sutured to permit 

loading during testing. The three heads of the deltoid were each sutured separately using a 

transosseous suture technique with holes located at the deltoid insertion. The 

subscapularis and infraspinatus were sutured at their musculotendinous junction using a 

running locking stitch that encompassed the inferosuperior breadth of the tissue. The 

remainder of specimen preparation was completed as described in Section 3.2, including 

the fixation of optical trackers (OptoTrak Certus, NDI, Waterloo, ON) to the scapula and 

the insertion of a load sensing and optically tracked intramedullary humeral rod.  

6.2.3 Simulator Testing Apparatus 

Following specimen preparation, humeral and scapular anatomic landmarks were 

digitized to create physiologically relevant coordinate systems for use in the real time 

control of joint motion and in post-hoc data analysis. The load sensor, glenosphere, and 

humeral cup were also digitized to facilitate the transformation of the recorded joint loads 

into meaningful coordinate systems. The scapula was cemented into the pot of the 

simulator as described in Chapter 3 (Section 3.2.1). This simulator enables loads to be 

independently applied to each of the rotator cuff groups and the three heads of the deltoid 

along physiologically accurate lines of action. It also has a guide system that facilitates 

the assessment of clinically relevant tests including passive and active range of motion, 

and strength. Additionally, as described in Chapter 5, the simulator is capable of 

producing accurate and repeatable muscle driven active motions through the use of real 

time kinematic data and a validated multi-PID control system. Before being passed to the 

control system, the raw kinematic data measured by the bone mounted optical trackers 
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was transformed into meaningful joint rotations using the joint motion decomposition 

method of Amadi et al. (Amadi & Bull, 2010). This method was implemented in place of 

the technique used in Chapter 5 (Section 5.2.2.2) because it allowed the control of all 

three rotational DOF even with the humerus in full adduction where traditional Euler 

angle methods would be unable to provide reliable measurements. The simulator system, 

in addition to producing glenohumeral motion, produced scapular rotations, which 

maintain the correct glenohumeral-to-scapulothoracic rhythm throughout active 

abduction.    

6.2.4 Experimental Testing Protocol 

Twenty-seven implant configurations were evaluated using a full factorial study design 

similar to that of Clouthier et al. (2013), corresponding to all of the possible combinations 

of the following three variables: (1) glenosphere lateralization – 0,5,10mm; (2) humeral 

polyethylene cup thickness – 0,3,6mm; (3) humeral lateralization – 0,5,10mm (Table 6.1). 

The testing order of these 27 configurations was randomized. It is important to note the 0, 

3, 6 mm humeral polyethylene cup thicknesses would correspond to clinical thicknesses 

of 3, 6, and 9mm due to the +3mm Depuy polyethylene cup used in this study. Therefore, 

from this point forward the polyethylene cup thicknesses will be referred to as 3, 6, and 9 

mm. Also, for each configuration, four distinct tests were performed: passive internal-

external rotational ROM, active internal-external rotational (IR-ER) ROM, active external 

rotation (ER) strength, and active abduction. With the humeral rod held in adduction by 

the guide system described in Chapter 2 (Section 2.2.2), active IR-ER ROM was assessed 

by applying a combined 50 N load distributed between the subscapularis, infraspinatus, 

and three deltoid heads using the loading ratios described by Escamilla, Yamashiro, 

Paulos, and Andrews (2009), as outlined in Table 6.2. Loads were ramped over 10 

seconds, and the final IR and ER orientations were recorded once the maximum load was 

held constant for three seconds. ER strength was assessed with the humerus held in 

adduction, neutral rotation, using the same loading protocol as for ER ROM. The torque 

produced by the joint was recorded by the load cell interposed between the two halves of 

the intramedullary humeral rod and was averaged over a two second period. Passive IR-

ER ROM was assessed while constant loads were applied to the shoulder musculature as 
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described by Wellmann et al. (2009). In this test, the experimenter internally and 

externally rotated the arm until a predefined torque end point of 0.8 Nm was achieved, as 

previously described in Section 3.2.2. Active abduction was simulated from 0° (or as 

close as the RTSA configuration’s adduction deficit would permit) to 90° of 

humerothoracic abduction at a rate of 1 degree/second. During this motion, scapular 

rotations were dictated by the 2:1 glenohumeral-to-scapulothoracic rhythm described by 

Inman and Abbott (1944). In the most extreme implant configurations, the mechanical 

advantage of the deltoid is severely diminished, and to facilitate smooth motion, active 

abduction was performed using 50% of the standard mass required to replace that of the 

removed distal arm. 

6.2.5 Outcome Variables & Statistical Analyses 

A number of outcome variables were used in this testing protocol to assess both the 

functional effects of the various configurations as well as their effects on muscle and joint 

loading during active motion. Active and passive IR ROM and ER ROM were each 

quantified as the magnitude of rotation from the neutral position with the humerus 

maintained in adduction using the humeral guide arc validated in Chapter 2 (Section 

2.2.2). Active ER strength was quantified as the average torque measured by the humeral 

rod load cell. However, in the interest of brevity, this chapter will only present the active 

IR and ER ROMs from these functional outcomes. 

In addition to the above-mentioned outcomes, the effects of implant configuration on 

active abduction were assessed using three outcome variables. First, resultant joint force 

was calculated by transforming the joint loads (Cartesian forces and torques) measured by 

the glenosphere load cell (using the previously recorded specimen, load cell, and implant 

digitizations) into a coordinate system oriented coincident with a standard glenoid 

coordinate system and located at the center of rotation of the glenosphere. It is important 

to note that movement of the center of the glenosphere due to lateralization was 

accounted for in this transformation. The accuracy of transforming these loads is assessed 

in Appendix A. The transformed Cartesian forces were then used to calculate the resultant 

joint force. Second, effects on total deltoid load were evaluated by measuring and  
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Table 6.1: Tested levels of RTSA implant parameters. 
 
 
 
 

 
Table 6.2: Muscle loading ratios used to achieve active internal and external 
rotation. 
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summing the force applied by the three heads throughout motion. The load recorded for 

joint load and deltoid load were transformed into percent body weight (%BW) by first 

accounting for the reduced level of mass replacement used during testing, and then 

dividing by the donor’s total body weight. The third outcome – joint loading direction in 

the scapular plane – was calculated using the transformed y and z forces, which 

correspond to the superior and lateral directions, respectively. With this variable, 0° 

corresponds to a purely compressive force and positive angles to upwardly directed forces 

(Figure 6.6). Each of these three outcome variables were assessed at 5° increments 

between 15 and 50° of glenohumeral abduction – a range that all implant configurations 

were able to achieve. 

A three-way (glenosphere lateralization, humeral polyethylene cup thickness, humeral 

lateralization) Repeated Measures ANOVA (RM-ANOVA) was performed for both the 

active IR and ER ROM outcome variables. A four-way (glenosphere lateralization, 

humeral polyethylene cup thickness, humeral lateralization, level of abduction) RM-

ANOVA was performed for the three outcomes related to active abduction. Pairwise 

comparisons and analyses of interaction effects were performed for any cases 

demonstrating a significant trend effect (p<0.05). Power analyses were carried out for 

each outcome variable and it was found that seven specimens were sufficient to achieve at 

least 80% power for each outcome.  
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Figure 6.6: Definition of loading angle convention. 
This figure illustrates the angular values which correspond to a purely compressive and 
upwardly directed joint load.  
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6.3 Results 

6.3.1 Active IR & ER ROM 

Results of the three way RM-ANOVA evaluating IR ROM demonstrated that humeral 

polyethylene cup thickness and glenosphere offset had a significant main effect on motion 

(p=0.017 & p=0.04, respectively). No statistically significant interaction effects were 

observed. Increases in humeral polyethylene cup thickness were found to decrease IR 

ROM while increases in glenosphere lateralization increased and then decreased motion 

(Figure 6.7). A similar analysis for ER ROM showed that humeral offset and glenosphere 

offset had significant main effects on motion (p=0.003 & p=0.043, respectively). In this 

case, increases in either variable resulted in increases in motion with glenosphere offset 

having a slightly stronger effect (Figure 6.7).  

6.3.2 Joint Load 

Results from the four way RM-ANOVA for resultant joint force demonstrated that 

humeral polyethylene cup thickness, glenosphere offset, and the level of abduction, 

produced significant main effects on loading (p=0.007, p<0.001, & p=0.033, 

respectively), but humeral offset did not (Table 6.3). Additionally, humeral offset and 

glenosphere offset each interacted significantly with abduction (p=0.029 & p=0.003, 

respectively) (Figure 6.8). Humeral polyethylene cup thickness and glenosphere offset 

both showed increases in joint load as the offsets were increased, while abduction showed 

increasing joint load as active motion progressed. The joint load produced by the +9mm 

humeral polyethylene cup thickness was significantly greater than that of the two lower 

levels (+3mm: 4.0±1.1%BW, p=0.034 & +6mm: 2.6±0.7%BW, p=0.026) while the joint 

loads associated with the varying glenosphere offsets were all significantly different from 

each other (at least 7.4%BW, p≤0.007). Investigation of the pairwise comparisons for the 

two significant interactions showed that only one comparison, 0 vs 10mm at 30 

abduction, was statistically significant (2.2±0.6%BW, p=0.021) for the humeral offset 

factor, while all but one  
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Figure 6.7: Implant variables with main effects on IR and ER ROM. 
Graphs of mean (SDs omitted for clarity) IR (top) and ER (bottom) ROM for implant 
variables with a significant main effect. Note that levels on x-axis correspond to +3, +6 
and +9 for the humeral polyethylene cup thickness variable and 0, 5, & 10mm for the 
humeral and glenosphere offset variables. Standard deviations from 9.1° to 16.0°. 
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Table 6.3: Summary of implant parameters with significant main effects for active motion outcome variables. 
This table outlines the factors which produced significant main effects for each of the three outcome variables. Additionally, follow-up 
pairwise comparisons are shown (mean±SE) for these significant variables. As well, the Newton load values are provided in brackets. 
Note that the 1st, 2nd, and 3rd offsets correspond to 0, 5, and 10mm for the humeral offset and glenosphere offset factors but 0, 3, and 
6mm for the humeral polyethylene cup thickness factor. 
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Figure 6.8: Implant variables whose effects on joint load varied across abduction. 
Data represent the mean (SDs omitted for clarity) joint load averaged over all conditions 
and for differing levels of humeral and glenosphere offset (0, 5, 10mm). Standard 
deviations from 7.3 to 12.3 %BW. 
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comparison in the glenosphere offset interaction were significant (≥4.3%BW, p≤0.023) 

(Figure 6.8). 

6.3.3 Total Deltoid Load 

All factors in this analysis were found to produce a significant main effect: humeral offset 

(p=0.004), humeral polyethylene cup thickness (p=0.012), glenosphere offset (p=0.002), 

and active abduction angle (p<0.001) (Table 6.3). The variations in deltoid load across 

active abduction, for the differing levels of humeral and glenosphere offset, are shown in 

Figure 6.9. Additionally, there was a significant interaction effect between the humeral 

offset and glenosphere offset factors (p=0.03). The humeral offset main effect 

demonstrated a trend of decreasing deltoid load with increasing offset while the 

remaining three main effects produced increases in force as their value increased. 

Pairwise comparisons for each of the implant factor main effects demonstrated that: 0 and 

10mm humeral offsets significantly differed (3.0±0.7%BW, p=0.022); +9mm humeral 

polyethylene cup thickness significantly differed from +3 and +6mm (2.9±0.8%BW, 

p=0.03 & 1.1±0.2%BW, p=0.006, respectively); 0mm glenosphere offset significantly 

differed from 5 and 10mm (5.8±1.2%BW, p=0.01 & 9.1±1.8%BW, p=0.007, 

respectively). The interaction between humeral offset and glenosphere offset 

demonstrated that deltoid load decreased with increasing humeral offset for all levels of 

glenosphere offset; furthermore, the effect of humeral offset was strongest with the 

glenosphere in its 10mm position (Figure 6.10). Moreover, the stronger effect of humeral 

offset with the glenosphere in 10mm caused the comparisons at 5 and 10mm of humeral 

offset to not be significant between the 5 and 10mm glenosphere offsets (≤3.1 %BW, 

p≥0.878) when all other comparisons were (≥5.5%BW, p≤0.031). 

6.3.4 Joint Load Angle 

Only humeral offset and active abduction angle produced significant main effects (both 

p<0.001) for this outcome, while glenosphere offset significantly interacted with 

abduction (p=0.012) (Table 6.3) (Figure 6.11). Increases in humeral offset or abduction 

angle both produced decreases in the joint load angle (i.e. a more centrally directed load).  
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Figure 6.9: Total deltoid load across abduction.  
Data represent mean (SDs omitted for clarity) of total deltoid force over all conditions 
and for differing levels of humeral and glenosphere offset (0, 5, 10mm). Note that 
humeral and glenosphere offset data sets are shown for interest sake but neither 
produced a significant interaction with abduction for this outcome. Standard deviations 
from 4.0 to 15.6 %BW. 
 

 
Figure 6.10: Total deltoid load interaction between humeral and glenosphere offset.  
Data represent mean (SDs omitted for clarity) of total deltoid load across abduction for 
changes in humeral and glenosphere offset. Standard deviations from 5.8-12.3 %BW. 
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Figure 6.11: Joint load angle across abduction.  
Data represent mean (SDs omitted for clarity) of joint load angle over all conditions and 
for differing levels of glenosphere offset (0, 5, 10mm) which produced a significant 
interaction with abduction. Standard deviations ranged from 9.5° to 13.5°. 
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All pairwise comparisons between the three humeral offset levels were significantly 

different (Mean at 0mm: 37.2±11.5°; Difference 0mm vs 5mm: 2.6±0.4°, p=0.002; 

Difference 0mm vs 10mm: 6.0±0.5°, p<0.001; Difference 5mm vs 10mm: 3.4±0.3°, 

p<0.001). 

6.4 Discussion 

Reverse Total Shoulder Arthroplasty has become a common procedure for an array of 

shoulder conditions; however, its primary indication is for the treatment of patients 

suffering from rotator cuff tear arthropathy that impair shoulder function. The purpose of 

this procedure, as described by Grammont and Baulot (1993), is to medialize the 

shoulder’s center of rotation, thus increasing the mechanical advantage (i.e. effective 

strength) of the remaining muscles – primarily the deltoid. Since RTSA’s original 

description, a number of implant parameters have been introduced to improve its efficacy 

with respect to increasing the deltoid muscle’s mechanical advantage, and to address 

clinical problems, such as scapular notching. Three implant parameters that vary among 

current commercial RTSA systems are: humeral cup medialization, humeral polyethylene 

cup thickness, and glenosphere lateralization. However, the effects of these variables on 

important functional and biomechanical variables have not been fully investigated. Thus, 

this study aimed to clarify the implant variables’ effects on: internal rotation range of 

motion, external rotation range of motion, the deltoid loading required to produce active 

shoulder abduction, and the joint loading resulting from this motion. 

6.4.1 Active IR & ER ROM 

Internal and external rotational ROMs were each evaluated. Humeral polyethylene cup 

thickness and glenosphere offset were each found to affect IR ROM. Although humeral 

polyethylene cup thickness produced a decrease in motion that totaled ~5° across its three 

levels, glenosphere offset increased rotation by ~6° when offset was increased by 5mm; 

however, this increase was reversed when the offset was further increased to 10mm. With 

respect to the effects of changing humeral polyethylene cup thickness, the decreases 

observed can perhaps be attributed to how the rotator cuff insertions are inferiorized when 
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humeral polyethylene cup thickness is increased. This inferiorization may decrease the 

overall effectiveness of the cuffs or the range across which they are effective. Despite 

these neutral or negative effects on IR ROM, all of these values fell just below or above (-

5 to +11°) the average physiologic value (~46°) in the literature for native anatomy 

(Virani et al., 2013). In contrast, humeral offset had no effect at any level of lateralization.  

The range of external rotation was significantly increased by both humeral and 

glenosphere offset with each producing approximately equivalent increases of 10° when 

their levels were increased from 0 to 10mm. These ER ROM exceeded the post-operative 

results reported by Cuff et al. (2008) but were still ~17° less than the average physiologic 

ER ROM presented in the literature for native anatomy (Virani et al., 2013). In the 

clinical setting, external rotation is typically limited following RTSA, but internal rotation 

is less affected; therefore, both humeral and glenosphere offsets represent a positive 

option for increasing ER without negatively affecting IR. Conversely, humeral 

polyethylene cup thickness has no effect on ER and decreases IR, and thus is not a 

favourable option for improving post-operative ROM. 

6.4.2 Joint Load 

The joint loading results obtained in this active motion study averaged over all conditions 

were much higher than those of Ackland et al.’s static simulation (65%BW vs 29%BW at 

90° abduction) and somewhat higher than the computational results of Kontaxis et al. 

(50%BW at 100° abduction) both of whom did not simulate rotator cuff loading 

(Ackland, Roshan‐Zamir, Richardson, & Pandy, 2011; Kontaxis & Johnson, 2009).  Our 

results, however, were very similar to the finite element study by Terrier et al. (60%BW), 

who like us, simulated only a supraspinatus deficiency (Terrier, Reist, Merlini, & Farron, 

2008). Joint load magnitude was not affected by changes in humeral offset, but did 

increase as a result of increases in humeral polyethylene cup thickness or glenosphere 

offset. However, humeral polyethylene cup thickness only increased joint load by 3%BW 

from its +3 to +9 configuration, which may not represent a clinically significant change. 

Glenosphere offset, on the other hand, increased joint load by ~16%BW from its 0 to 

10mm configuration. The greatest effect of glenosphere lateralization on joint load was 
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seen at the initiation of active abduction and decreased as the arm approached 90°. 

Glenosphere lateralization is often advocated as a means to avoid scapular notching, 

which occurs when the humeral cup impinges on the lateral scapular border inferior to the 

glenoid; however, this adjustment reduces the effectiveness of the shoulder musculature 

and as a result, increases joint loading as observed in these data. These increases in joint 

loading may lead to increased wear of the polyethylene humeral cup and will increase the 

loads experienced at the glenosphere baseplate, which may negatively affect fixation. 

6.4.3 Total Deltoid Load 

In comparing our average total deltoid load results over all joint conditions to those of 

Ackland et al. and Kontaxis et al., our loads are larger (67%BW vs 37%BW & 45%BW, 

respectively)( Ackland, Roshan‐Zamir, Richardson, & Pandy, 2011; Kontaxis & Johnson, 

2009). However, the studies by Ackland et al. and Kontaxis et al. modeled RTSA with 

complete rotator cuff deficiency, whereas our model involved actively loading the 

infraspinatus/teres minor and the repaired subscapularis muscle. It is possible that the 

remaining rotator cuff muscles function as adductors, thus increasing demands on the 

deltoid during the initiation of active abduction. Detailed analysis of our data 

demonstrated that the total deltoid muscle load required from the three heads to achieve 

motion was significantly affected by all three implant variables. Increases in humeral 

offset were found to effectively decrease the required deltoid force, while increases in the 

other two parameters (glenoid offset and humeral polyethylene cup thickness) each 

increased the required deltoid load. Humeral offset and humeral polyethylene cup 

thickness produced equivalent changes in the magnitude of deltoid load, but the former 

decreased deltoid load while the latter increased it. Glenosphere lateralization produced a 

much more significant effect by increasing deltoid load by 7%BW when increased by 

10mm. Although the clinical significance of these findings are difficult to determine, 

humeral offset is the only parameter in this model that decreased deltoid loading, whereas 

glenosphere offset produced a marked increase. Therefore, humeral offset and 

glenosphere offset should be important considerations when addressing the common 

clinical complications of deltoid fatigue and acromial fractures, which are both, 

associated with excessive increases in deltoid load.  In most implant systems, the only 
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modifiable factor of the aforementioned three parameters is humeral polyethylene cup 

thickness.  Therefore, during surgery the implant should not be over-stuffed with 

placement of an overly thick polyethylene insert, as this will likely have detrimental 

effects on deltoid muscle loading.  Further studies are required to determine the optimum 

joint load and soft tissue tension to maximize stability and minimize deltoid muscle loads.    

Results for total deltoid loading also showed that humeral and glenosphere offsets 

interacted significantly. This interaction indicated that increasing humeral offset can be 

used to counter the increasing deltoid load requirements associated with increased 

glenosphere lateralization, and that this countering effect is strongest when the 

glenosphere is offset by 10mm. However, this effect cannot fully reverse the deleterious 

effect of glenosphere lateralization on required deltoid load, and thus humeral offset 

should not be considered as a valid means to completely compensate for excessive 

glenosphere lateralization. This is especially important when considering the effect of 

glenosphere lateralization on baseplate loading. It is unlikely that the observed decreases 

in the deltoid load associated with humeral offset would be sufficient to eliminate the 

increases in baseplate moments produced by the increased distance between the baseplate 

and glenosphere rotation center. 

6.4.4 Joint Load Angle 

The joint loading angle in the scapular plane was found to be affected only by changes in 

humeral offset. Increases in humeral offset decreased average load angle from ~37° to 

~31° over a 10mm change. Glenosphere offset interacted with abduction angle whereby 

increases in offset had a more pronounced effect of decreasing load angle with the arm in 

adduction than in abduction. These findings further support the use of humeral offset as a 

means to limit the negative effects of joint loading by producing a load vector which is 

more compressive, and thus less challenging to baseplate fixation. 

6.4.5 Limitations and Strengths 

This study had a number of associated limitations. First, the study used cadaveric 

specimens, which limits the precise replication of the physiologic condition. However, 
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because RTSA is used to treat massive rotator cuff tears, the articulating surface and a 

number of soft tissues, whose properties may be of concern in other cadaveric models, 

were removed as part of the implantation protocol. Second, the full mass of each 

specimen’s arm was not simulated because pilot testing demonstrated that some RTSA 

configurations severely diminished the musculature’s mechanical advantage, making 

motion simulation difficult. The presented %BW should, however, be physiologically 

accurate because joint and muscle forces are directly related to the arm mass. Although 

not necessarily a limitation, it should be noted that the muscle groups loading in this study 

are not representative of all patients treated with RTSA as some have only partial rotator 

cuff function post-operatively, while others have no function. Finally, stability of the joint 

during differing implant configurations was not investigated and this information may be 

important to fully understanding the positive and negative effects of these variables.  

This model also had a number of strengths: (1) it is the first to evaluate a full range of 

possible implant configurations that encompass both commercially available 

configurations and those that were previously unconsidered; (2) it is the first to directly 

measure the six DOF joint loads occurring at the glenosphere; and (3) it combined 

assessments of both shoulder function and loading characteristics. Further to the second 

strength, the six DOF loads were quantified using a novel glenosphere-load cell construct 

which is a first in the investigation of shoulder joint loads. Prior studies that have 

investigated joint loading following arthroplasty have used load cells mounted beneath 

the potted scapula which is likely to result in loading artifacts related to contact of muscle 

cables on the scapula as well as the inability to quantify internal joint loads caused by 

passive soft tissues. These limitations are effectively eliminated in the construct described 

in this study.      

6.4.6 Conclusion 

By considering the results from each of these outcome variables, it is possible to draw a 

number of conclusions about the effects and potential implications of the three Reverse 

Total Shoulder Arthroplasty implant parameters investigated. First, medializing the 

humeral cup, and thus lateralizing the greater tuberosity, improves external rotation 
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without limiting internal rotation. This medialization also decreases the demands on the 

deltoid during abduction, and produces a more compressive joint load; however, it does 

not decrease the magnitude of joint load. Second, increasing the thickness of the humeral 

polyethylene cup negatively affects internal rotation without an associated improvement 

in external rotation. Additionally, these increases in thickness produce increases in joint 

load magnitude and required deltoid force without improving the joint load angle. It is 

thus important with this variable to balance between thinner components which may be 

more susceptible to failure due to wear and thicker components which induce greater joint 

load and thus the potential for wear. Third, increasing glenosphere lateralization improves 

external rotation and has neutral to positive effects on internal rotation depending on the 

amount of the offset used. However, this offset produces the largest increase in joint load 

and total deltoid force of any parameter tested without having a positive effect on joint 

loading direction. 

Therefore, with respect to the assessed outcomes, humeral polyethylene cup thickness 

may not represent a useful option in optimizing RTSA implant design since it was not 

found to have any meaningful positive effect on shoulder function or loading. 

Glenosphere lateralization is often used to eliminate scapular notching, but caution is 

required when specifying its level of offset. This is because glenosphere lateralization 

produced marked negative effects on joint and muscle loading, which are two of the 

greatest long term concerns for the success of this procedure. If a large overall offset is 

required, consideration should be given to bone graft lateralization as this can decrease 

the offset between the implant and fixation locations thus decreasing loading. 

Lateralization of the humerus, through medialization of the humeral cup, may represent 

the most promising implant parameter to optimize the biomechanical aspects of Reverse 

Total Shoulder Arthroplasty design, since it had positive or neutral effects on all variables 

tested. Finally, humeral lateralization may be a useful tool in countering some of the 

negative effects of glenosphere lateralization but this must be cautiously considered.    

In addition to their inherent clinical value, the data produced in this study has 

demonstrated the value of this simulator’s functionality, especially the active motion 

capability validated in Chapter 5. The information provided about resultant joint loads, 
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total deltoid force, and joint loading angle, have not been previously described in the 

literature and could only be meaningfully assessed using a testing apparatus that produces 

motion entirely through muscle loading. Thus, the active motion simulator developed in 

this thesis is uniquely capable of assessing clinical questions such as those addressed here 

and brings a greater level of physiologic accuracy in comparison to other techniques such 

as computer modelling. 
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CHAPTER 7 – General Discussion and 
Conclusions 

7 - 
OVERVIEW 

This chapter briefly touches on each of the objectives and hypotheses defined in 

Chapter 1 (Section 1.9). The development work undertaken to achieve the stated 

objectives and the investigations employed to address the hypotheses are also 

discussed. The strengths and limitations are reviewed, as are the testing methods 

used to evaluate the apparatus’ performance and to assess research questions of 

interest. Finally, an outline for potential future development and research with this 

simulator system is proposed. 

7.1 Summary 
In order to gain an improved and more holistic understanding of healthy and 

dysfunctional shoulder biomechanics, it is critical to study the joint’s function, 

kinematics, and kinetics as they act together within the joint. Evaluation of these 

outcomes may be achieved using a number of different techniques; however, the balance 

between physiologic accuracy and assessment repeatability that can be achieved through 

in-vitro simulation makes this mode of testing especially powerful. Additionally, in-vitro 

simulation can enable the evaluation of multiple joint conditions and surgical procedures 

in a single specimen (which increases the statistical power of the findings), thus allowing 

direct comparisons to be performed. In-vitro simulation of the entire shoulder joint 

complex can be classified into three types of testing: static, passive and active. To date, 

static and passive testing have represented the vast majority of in-vitro testing in the 

shoulder (Ackland et al., 2008; Alexander et al., 2013; McGarry, Lee, Duong, & Lee, 

2005). These types of systems can provide important data with respect to inherent joint 

parameters and joint function, but lack the ability to accurately replicate in-vivo 

kinematics and kinetics. Active motion systems have been developed intermittently over 

the past 25 years to investigate these outcomes, but none of these systems have persisted 

long enough to achieve the same level of development as those for other joints. Therefore, 
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due to the importance of all of these forms of testing and the value of using them 

concurrently on an individual specimen, this research was undertaken to develop a system 

which could perform static, passive, and active assessments. A number of studies were 

performed to aid in its development and validation.  

The first phase of this research involved the design and evaluation of a system that would 

improve the physiologic accuracy of the simulations through a number of different 

developments (Objective 1), allow the repeatable orientation of the shoulder throughout 

its range of motion (Objective 2), and enable the manipulation of individual rotational 

degrees of freedom (DOF) (Objective 2). The goals of Objective 1 were achieved through 

the implementation of the apparatuses described in Sections 2.2.3-2.2.5. The new muscle 

guide system was shown to produce load losses that were always <4 N and which 

averaged only 2.2 N. Therefore, the new guide system was considered a valid means to 

accurately load the muscles of interest. Objective 2 was addressed through the 

development of the humeral guide system outlined in Section 2.2.2. Hypothesis 1 was 

confirmed; it was shown that the device was a valid method for improving the accuracy 

and repeatability of joint positioning—on average 3.9° more accurate and 1.3° more 

repeatable than freehand placement—and for isolating individual DOF – 6.8° less 

variation in abduction during rotation tests.  

The second phase of this research (Objectives 3 & 4) used the new functionality to assess 

a basic biomechanical phenomenon (Chapter 3) and a relevant clinical question (Chapter 

4). In the study of Chapter 3, the effect of loading the short head of the biceps and 

coracobrachialis on joint function and stability was assessed. From this investigation, it 

was possible to demonstrate that the studied muscle group does have an effect. 

Importantly, the data confirmed Hypothesis 2 – that the simulator could effectively 

explore a basic biomechanical phenomenon. Specifically, it was possible to statistically 

differentiate the small variation in the muscle’s effect at different load levels, thus 

illustrating the importance of the high level of repeatability achieved by the system. In 

Chapter 4, we addressed a clinical question of ongoing interest– are the Bristow and 

Latarjet coracoid transfer procedures biomechanically equivalent, as suggested by the 

combined name ‘Bristow-Latarjet,’ which is commonly used. This question was of 
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interest because clinical reports on this procedure often fail to clearly define which 

technique was used despite a lack of evidence that they are in fact equivalent. Using the 

same functionality as in Chapter 3, we were able to clearly define the biomechanical 

effects of these two procedures and demonstrate that, in all but one injury state, they are 

not equivalent, and that the Latarjet technique provides superior joint stabilization. When 

comparing the findings for the three tested levels of bone loss, it was possible to observe 

clear yet subtle changes in the effects of the two procedures. This provides further 

evidence in support of Hypothesis 3 – that the simulator’s capabilities help to clearly 

differentiate the biomechanical effects of varying injury conditions and reconstruction 

states. 

Objective 5 was achieved in the third phase of this research through the development of 

the functionality required to produce active abduction in multiple planes of motion. 

Chapter 5 describes the design and development of the software and hardware systems 

required to achieve active motions in which all three rotational degrees of freedom of the 

shoulder are simultaneously controlled. Unlike previous active motion shoulder 

simulators, the design of the presented system uses real time kinematic feedback and 

multi-PID closed loop control. This control system employs three controllers – one for 

each rotational degree of freedom – that are structured in a cascade-parallel structure in 

which the PID controlling abduction generates muscle loading commands for the deltoids 

as a whole. This information is cascaded to the two other PIDs to enable control of the 

secondary rotational DOF while still maintaining physiologically appropriate muscle 

loading between the different groups. Chapter 5 and Appendix B also describe the design 

of a method to continuously orient the scapula, throughout glenohumeral abduction, such 

that the proper scapulothoracic rhythm is maintained.   

Validation of the simulator’s active motion capabilities in terms of accuracy, 

repeatability, and robustness was presented in Chapter 5. It was found that the simulator 

was capable of following a predefined motion pathway in its primary DOF (e.g. 

abduction or horizontal extension) to within an average of 1° for both motions. 

Additionally, repeatability was found to be very high, with averaged standard deviations 

across both motions to be ~0.3°. The system could also control the secondary, non-
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profiled DOF with high repeatability (<0.5°). Finally, the simulator’s controller was 

found to be robust; nearly identical accuracy and repeatability results were produced for a 

range of simulated specimen body mass indices, and, when the system was perturbed, 

there was only a small disturbance in glenohumeral position and the disturbance was 

quickly rejected. As a whole, these findings confirm Hypothesis 4 – that an active motion 

controller based on real time kinematic feedback and closed loop PID control will achieve 

active motions with improved accuracy and repeatability.  

The final phase of this research (Objective 6) was the assessment of a clinically relevant 

question that required the evaluation of static, passive, and active biomechanics in order 

to provide a more holistic understanding of its effects. The questions addressed were: (1) 

what are the effects of various Reverse Total Shoulder Arthroplasty implant parameters 

on range of motion and total deltoid load required to produce active motion; and (2) what 

is the joint load and the joint loading angle that results from active motion? In order to 

assess the implant parameters of interest, a custom modular Reverse Total Shoulder 

Arthroplasty implant system was designed as outlined in Chapter 6 and Appendix D. A 

six DOF load cell was installed beneath the glenosphere component of the RTSA to 

record the loads passing through the joint.  

Using this implant system and the static, passive, and active functionality of the 

simulator, data were recorded that previously would have been impossible to obtain. 

From this data, it was determined that the implant parameter that is most often adjusted 

clinically – humeral polyethylene cup thickness – negatively affects functional outcomes, 

such as range of motion, and also negatively affects active motion outcomes, such as joint 

load and deltoid load. Conversely, humeral polyethylene cup lateralization – which is 

currently not adjustable in any commercial implant – was the only parameter capable of 

increasing range of motion while also decreasing joint and deltoid load. Therefore, the 

results of this study confirm Hypothesis 5 –  using the full range of functionality 

developed in this thesis would enable clinical questions to be more completely assessed 

and help to provide greater clarity with respect to the overall effects of the tested 

conditions.      
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7.2 Strength and Limitations 
To our knowledge, this simulator is the first to combine the capabilities to assess static 

and passive outcomes in a well-controlled manner while also enabling the same specimen 

to undergo muscle driven active motion testing. As demonstrated in Chapter 6, by 

combining these capabilities, it is possible to gain a better understanding of the effects of 

different testing conditions on a wider range of outcomes, thus allowing investigators and 

the clinical community the opportunity to weigh the importance of positive and negative 

effects. In addition to the value of combining both passive and active testing, the 

simulator is further enhanced by the individual developments presented in this work. 

Static/passive simulators have been widely used to assess in-vitro shoulder biomechanics; 

however, as outlined in Chapter 2, previous systems have each suffered from limitations. 

Although not all of the limitations of previous simulators have been addressed by this 

system, the developments made herein have increased the physiologic accuracy of the 

simulated testing environment as well as the accuracy and repeatability of the testing 

procedures. Respectively, these improvements have enabled testing to more closely 

replicate the true in-vivo case and enabled the simulator to more precisely differentiate the 

effects of the tested conditions.  

The strength of the active motion simulation functionality developed during this work lies 

in the improvements in control and the physiologic accuracy of the applied muscle 

loading. In comparison to previous systems, the active motion simulator is capable of 

producing motions which progress at a more consistent rate and more accurately along a 

prescribed pathway. As well, unlike previous systems, use of the described multi-PID 

controller allows all rotations to be controlled in real time rather than depending on 

heuristic loading changes between tests in order to achieve the desired joint 

configurations. Additionally, use of this control system improves the physiologic 

accuracy of the applied muscle loads by modulating muscle force until the desired 

configuration is achieved instead of relying entirely on EMG data which may not directly 

apply to the specific specimen or motion being tested. Finally, the system developed here 

is the first to integrate scapular rotation into an active motion simulator and thus should 

more closely replicate the joint kinematics and stability of the shoulder in-vivo. 
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The simulator system and investigations presented in this dissertation did have some 

limitations. First, as with all in-vitro biomechanical testing apparatuses and 

investigations, this work used cadaveric specimens which precluded the precise 

replication of the in-vivo environment of the shoulder. In many cases these cadaveric 

specimens were drawn from an elderly donor population meaning that the properties of 

the tissues may have been poorer than those of a younger donor. Additionally, the results 

may have been influenced by the fact that the patient population which experiences some 

of the clinical conditions evaluated – specifically, the instability conditions tested in 

Chapter 4 – is typically much younger than the specimens available. However, in many 

cases, the effects of specimen tissue quality were negated by the repeated measures 

testing procedures used during in-vitro simulation. Second, the scapular rotation 

mechanism developed during this work cannot currently control all three rotations of the 

scapula during arm motion and thus the simulated glenohumeral kinematics and stability 

may not precisely match the in-vivo environment. However, scapular abduction is thought 

to have the greatest effect on joint stability, and this rotation was simulated. Third, 

although it is believed that the present active motion system will produce muscle loading 

with greater physiologic accuracy in comparison to previous systems – due to its 

combined use of a-priori EMG data and PID control – it is unlikely that these muscle 

loads precisely reflect those which exist in-vivo. Fourth, the current system is only 

capable of achieving quasi-static active motions (~3°/sec) precluding the assessment of 

motions which may be affected by inertial loads. However, the types of research 

questions for which this system was developed do not involve rapid motions where 

inertial effects would be relevant.        

7.3 Current and Future Directions 
The current simulator system has fulfilled the objectives set out at the beginning of this 

work; however, a number of avenues exist to expand its functionality and improve its 

physiologic accuracy. The current active motion control system has been designed with 

the theoretical capability to control motion in any plane; however, its ability to perform 

active abduction in the frontal plane (i.e. 60° anterior to the scapular plane) has not been 

evaluated despite the importance of this motion in daily life. Therefore, evaluation of the 

  

 



www.manaraa.com

211 

simulator’s present ability to perform this motion and subsequent refinement should be a 

primary objective for the future. Although the current system is likely capable of 

achieving active forward flexion, the physiologic accuracy of the results, especially with 

respect to joint loading, may be compromised because the Pectoralis Major muscle group 

– which has a large role in producing this motion – is not presently simulated (Ackland & 

Pandy, 2011; Ackland et al., 2008). Thus, it would be important to configure the 

simulator to load this muscle group and develop a means to control its load using the 

existing closed loop control system.  

A second area that should be pursued is the evaluation of the simulator’s ability to control 

abduction motions above 90° (i.e. parallel to the ground). Abducting the arm beyond 90° 

has the potential to reduce the quality of the simulated motion because the external load 

due to gravity begins to decrease once the arm moves past horizontal. To date, no joint 

conditions have been tested whose primary orientation of importance is beyond 90 (e.g. 

reverse total shoulder arthroplasty is primarily intended to aid in the initiation of motion 

and recovery of some motion for patient’s exhibiting pseudo-paralysis and not the 

achievement of overhead motion)  and as a result, it has not been systematically 

evaluated. With that said, this motion was attempted for a small set of Reverse Total 

Shoulder Arthroplasty conditions during an ongoing testing protocol and the simulator 

was able to smoothly abduct the arm to 135°. However, if upon a more thorough 

evaluation, the simulator’s performance is not acceptable, it may be necessary to pursue a 

more complex control system that, in addition to the current kinematic process variables, 

may also use actuator position feedback. This feedback will help overcome the effects of 

having decreased muscle load requirements (due to decreased resistance from the arm’s 

mass after it passes 90° of abduction) while the actuator is still required to retract as 

discussed by Ferreira and colleagues (Ferreira, 2011; Ferreira, Johnson, & King, 2010).      

Another area of future work is in the improvement of the physiologic accuracy of 

simulating scapular rotation. The first step in doing this would involve the reprograming 

of the current scapular rotation controller to replicate different glenohumeral-to-

scapulothoracic rhythms that have been presented in the literature. By replicating these 

differing ratios it may be possible to determine what affect they have on glenohumeral 
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kinematics and this may allow the extrapolation of the importance of simulating the 

scapula’s other rotations. As discussed previous, the current system was not developed 

with the capability to simulate scapular version or tilting. This was a conscious choice, as 

simulating scapular version would not affect glenohumeral joint stability and scapular 

titling is not well understood. Despite there being disagreement about the scapula’s tilting 

pathway across glenohumeral abduction, development of a system capable of 

manipulating this degree of freedom may be warranted if the above mentioned 

investigations show that varying scapular elevation strongly influences glenohumeral 

kinematics. With the development of this new capability it would then be possible to 

perform basic biomechanical studies to assess the effects of different tilting pathways on 

glenohumeral joint stability. 

A final area of future simulator development would be the evaluation and subsequent 

improvement of the simulator’s ability to achieve complex rotational trajectories which 

involve simultaneous profiling of multiple glenohumeral degrees of freedom. As 

discussed in Chapter 5, the simulator is capable of controlling horizontal extension 

motion which is a first among shoulder simulators. Control of this rotation has 

demonstrated the simulator’s ability to produce motion which is not simply against 

gravity as with abduction and thus is an important stepping stone to more complex 

trajectories which combine these two rotations. The current control system’s design was 

structured such that it is fully capable of controlling these combined motion trajectories; 

however, it is anticipated that a new round of tuning would be required to produce 

satisfactory results. 

With the simulator’s current functionality and that which could be added as discussed 

above, a number of new areas of research could be pursued. First, the system could be 

used to investigate clinically relevant implant failure modes by evaluating specific aspects 

of implant design which have been shown to be prone to failure. An example would be 

directly measuring the loads passing through an implant at regions which have been 

identified as being vulnerable to over loading. A second new form of testing could 

involve the refinement of the standards which are used to design and evaluate medical 

devices.  
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7.4 Significance 
In-vitro biomechanical simulation of the shoulder joint complex is an important method 

for investigating both basic biomechanical phenomena and questions of direct clinical 

relevance. Although in-vitro simulation cannot fully replicate the in-vivo condition, it can 

play an important role in improving our understanding of shoulder biomechanics, since it 

enables the assessment of outcomes which cannot be tested with a patient population and 

enables the evaluation of multiple injury/reconstructed joint conditions. Therefore, the 

overall goal of this research was to maximize the relevance of in-vitro simulation through 

improvement of its physiologic accuracy, refinement of static/passive simulation 

techniques, and the development of an active motion controller based on real time 

kinematic feedback rather than predefined loading protocols. As discussed above, each of 

the goals of this research has been achieved. As a result, the simulator is now capable of 

performing assessments that have not been possible with any previously reported system, 

such as addressing both the shoulder’s functional (e.g. stability and ROM) and 

kinematic/kinetic (e.g. active motion) biomechanics. This has and will continue to enable 

researchers to consider all of the effects of a given joint condition on the shoulder’s 

biomechanics, and thus provide greater insight to the medical community.  

The specific advancements presented in this thesis that were made in each of the areas of 

in-vitro simulation are also significant. The refinements to the simulator’s physiologic 

accuracy, and the improved methods for performing passive assessments and recording 

their results, have enabled the effects of both basic biomechanical and clinically relevant 

conditions to be clearly and accurately defined. The development of an active motion 

control system based on closed loop control theory – a first in shoulder simulation – is 

also significant, as the motions produced by this system have been shown to have greater 

accuracy and repeatability than previous systems. Additionally, and more importantly, 

previous research has shown that active muscle driven motion is more physiologically 

accurate than passive experimenter manipulation of the arm and will thus ensure that the 

results produced are of the greatest possible value to the research and clinical community.  
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Finally, the greatest significance of this work is that studies performed on this simulator 

can improve clinical practice, as well as patient outcomes and quality of life. This was 

demonstrated by the two clinical studies presented in this thesis, which were both able to 

clarify the effects of commonly used orthopaedic procedures/implants on shoulder 

biomechanics. This can in turn inform clinical decisions and guide the design and use of 

future implants. The new experimental developments presented in this dissertation and 

the improvements they can bring to patient care will only increase in value as the clinical 

and fiscal demands on the health care system continue to grow.    
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Appendix A – Index of Anatomical & Research 
Terminology  

 
Abduction: To draw away from the median plane, specifically, in the plane of the scapula.  

Adduction: To draw towards the median plane, specifically, in the plane of the scapula.  

Acetabulum: The hemispherical cup of the hip joint. 

Acromion: The lateral extension of the spine of the scapula, forming the highest point of the 

shoulder. Adj. acromio-  

Acromioclavicular: Pertaining to the acromion and the clavicle.  

Actuate or Actuation: The act of changing or affecting something (e.g. apply motion or 

force). 

Actuator: A device that actuates; typically a pressure driven cylinder-piston device. 

Alternative hypothesis: In statistics, the hypothesis that there is in fact a significant 

difference between two populations, or, more specific to biomechanics, two conditions.  

Analysis of Variance (ANOVA): A statistical method for making simultaneous comparisons 

between two or more means; a statistical method that yields values that can be tested to 

determine whether a significant relation exists between variables. 

Anatomical neck: The boundary between an articular surface and surrounding bone. 

Anterior: Situated at or directed toward the front; opposite of posterior. Adj. antero- 

Anteversion: Tipping forward.  

Arthroplasty: Repair of a joint by implanting an artificial component.  

Anthropometry: The science dealing with the measurement of the size, weight, and 

proportions of the human body. Adj. antropometric,  

Articular: Pertaining to a joint. 

Articular cartilage: A specialized, fibrous connective tissue present in adults lining the 

articular surface of synovial joints.  

Articulate: To divide into or to unite so as to form a joint.  

Articulation: A joint; the place of union or junction between two or more bones of the 

skeleton.  

A-priori: Relating to or denoting reasoning or knowledge that proceeds from theoretical 

deduction rather than from observation or experience. 

Axial plane: See ‘Transverse plane’. 
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Ball-in-socket joint: An articulation in which the two surfaces are perfectly conforming. 

Bankart: An injury of the anterior glenoid caused by dislocation of the humeral head and 

which may include only soft tissue tearing or also involve a fracture of the glenoid bone. 

Benchtop: Simple testing which utilizes prescribed external loads and motions. 

Biarticular: Relating to a structure (e.g. a muscle group) which crosses to joints. 

Biceps: Muscle which flexes and supinates the forearm.  

Biceps or Bicipital Groove: The indentation between the greater and lesser tuberosity that 

the tendon of the long head of the biceps passes through as it exits the glenohumeral joint.  

Biomechanics: The study of the mechanical laws relating to the movement or structure of 

living organisms. 

Biplane radiography (x-ray): A form of medical imaging that records two simultaneous 

images of the body using x-ray to determine the 3D position of structures in the body. This is 

typically done at a high capture rate to produce stereoscopic videos.  

Body Mass Index (BMI): A weight-to-height ratio, calculated by dividing one's weight in 

kilograms by the square of one's height in meters and used as an indicator of obesity and 

underweight. 

Bone fixed coordinate system: See ‘local coordinate system’. 

Bursa: A fluid-filled sac or saclike cavity situated in placed in tissues where friction would 

otherwise occur.  

Cadaveric: Pertaining to a human body preserved for anatomical study. 

Cancellous: Of or denoting bone tissue with a mesh-like structure containing many pores, 

typical of the interior of mature bones.   

Cannulated: A structure or tool with a cylindrical hole completely through it.  

Capsuloligamentous: Relating to a structure where joint capsule and ligaments blend 

together. 

Cartilage: A specialized, fibrous connective tissue present in adults, and forming the 

temporary skeleton in the embryo, providing a model in which the bones develop, and 

constituting a part of the organisms joint mechanism.  

Cascading-Parallel: In this thesis, a control structure where multiple PID controllers run in 

parallel but cascaded below another.  

Clavicle: Elongated slender, curved bone (collar bone) lying horizontally at the root of the 

neck, in upper part of thorax.  
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Closed-loop control: A type of control system that automatically changes the output based 

on the difference between the feedback signal to the input signal. 

Conjoint or Conjoined Tendon: A tendon which acts as the terminus of more than one 

muscle; as with the tendon of the short head of the biceps and coracobrachialis. 

Contact mechanics: The study of the deformation of solids that touch each other at one or 

more points.  

Coracoid: A bone projection from the anterosuperior glenoid. Adj. coraco- 

Coracoacromial: Relating to the coracoid and acromion. 

Coracobrachialis: A muscle which originates on the coracoid and flexes/adducts the 

forearm.  

Coronal plane: A vertical plane, at right angles to a sagittal plane, dividing the body into 

anterior and posterior portions.  

DC servo-motor: An electronically controlled drive motor.  

Degree of freedom (DOF): In kinematic and kinetic analysis, a manner in which a motion or 

force can occur. For two DOF to be independent, they must be defined about two 

perpendicular axes. 

Deltoid: Muscle which abducts, flexes or extends the arm.  

Diarthrodial joint: See synovial joint.  

Digitization: In the context of this thesis, the process of digitally recording anatomical 

landmarks.  

Distal: Remote, farther from any point of reference.  

Distraction: Separation of joint surfaces without rupture of their binding ligaments and 

without displacement; surgical separation of the two parts of a bone after the bone is 

transected.  

Disturbance Rejection: The ability and speed at which a control system eliminates error in 

its response due to an external disturbance. 

Electromagnetic tracking: The use of the physics of electromagnetic fields to monitor the 

position of an object. 

Electromyography (EMG): The recording and study of the electrical properties of skeletal 

muscle.  

Elevation: To move away from the body. 

Epicondyle: A projection or boss upon a bone, above its condyle. Adj. epicondylar  

  

 



www.manaraa.com

219 

Euler Angle Sequence: A specific method used to decompose an objects orientation using a 

sequence dependent set of rotations. 

Extension: The movement by which the two ends of any jointed part are drawn away from 

each other; the bringing of the members of a limb into or toward a straight condition. [Motion 

in the vertical plane perpendicular to the plane of the scapula (Wuelker et al., 1998)]  

Extensor: Any muscle that extends a joint.  

External rotation: Rotation about the longitudinal axis of the humerus laterally.  

External validity: The extent to which the results of a study can be generalized to other 

situations. 

Fibrocartilage: Cartilage of parallel, thick, compact collagenous bundles, separated by 

narrow clefts containing the typical cartilage cells. Fibrocartilaginous ajd. 

Fiducial: (esp. of a point or line) assumed as a fixed basis of comparison. In biomechanics, a 

landmark that can serve as a means to compare results between to measurement teachniques. 

Finite element analysis (FEA): A method which discretizes a continuous object into many 

small ‘finite’ pieces that can then be analyzed individually using traditional mechanics 

equations to determine the overall load and displacement of the object. 

Flexion: Elevation in the sagittal plane of the body.  

Flexor: Any muscle that flexes a joint.  

Fluoroscopy: An imaging technique in which it is possible to record plane x-ray images at 

video capture rates (i.e. ≥60 Hz). 

Force Couple: The synergistic action of muscles to produce stability or movement in a joint. 

Forward flexion: Motion of the arm directly anterior away from the body. 

Fossa or Fossae: In anatomy, a hollow or depressed area.  

Gimbal lock: The loss of one degree of freedom in a three-dimensional space that occurs 

when the axes of two of the three gimbals are driven into a parallel configuration, "locking" 

the system into rotation in a degenerate two-dimensional space 

Glenohumeral: Pertaining to the glenoid and humerus.  

Glenohumeral ligaments: Bands, usually three on the inner surface of the articular capsule 

of the humerus, extending from the glenoid lip to the anatomical neck of the humerus.  

Glenoid: A fossa located on the lateral scapula resembling a pit or socket. Adj. gleno- 

Glenosphere: The hemispherical ball placed on the glenoid to reverse the anatomy of the 

shoulder during Reverse Total Shoulder Arthroplasty. 
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Global coordinate system: A coordinate system which is fixed and can be used to provide a 

constant reference for any other coordinate system.  

Goniometer: An instrument for measuring angles. 

Greater tuberosity: The large bone protuberance on the posterolateral humeral head.  

Hemi-arthroplasty: The replacement of one surface of a joint with artificial material. 

Heuristic: A method for proceeding to a solution using a loosely defined set of rules and 

through trial and error. 

Horizontal flexion-extension: Motion of the arm in a plane parallel to the ground forward 

and backwards, respectively.  

Humerothoracic: Relating to the humerus and thorax. 

Humerus: Long bone of upper arm. Adj. humero-  

Hyaline: Glassy and transparent or nearly so.  

Impingement: When two bones contact each other in a pathological manner. 

Inertia: A property of matter by which it continues in its existing state of rest or uniform 

motion in a straight line, unless that state is changed by an external force. 

Inferior: Situated below, or directed downward; in anatomy, used in reference to the lower 

surface of a structure, or to the lower of two (or more) similar structures. Adj. infra- or infero- 

Inferiorization: In Reverse Total Shoulder Arthroplasty, movement of the center of rotation 

of the shoulder joint in the inferior direction. 

Infraspinatus: Muscle originating on the posterior scapula which rotates the arm laterally.  

Instability: A pathologic condition in which there is an inability to maintain the normal 

relationship of the humeral head on the glenoid fossa.  

Interaction effect: In the analysis of variance (ANOVA) statistical method, an interaction 

effect is the effect of at least two independent variables on a dependent variable. Changes in 

the levels of these two variables influence the dependent variable in ways which are not 

additive and may not be one-to-one as their values increase. 

Internal rotation: Rotation about the longitudinal axis of the humerus medially.  

Intra-articular: Of or related to the space between to contacting surfaces. 

Intramedullary: Of or related to the cavity in the center of the long bones. 

In-silico: Performed on computer or via computer simulation 

In-vitro: In an artificial environment.  

In-vivo: Within the living body. 
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Isometric: Of, relating to, or denoting muscular action in which tension is developed without 

contraction of the muscle. 

Joint capsule: The saclike envelope enclosing the cavity of a synovial joint.  

Kinematics: Description of an objects motion without consideration for the forces causing it. 

Kinetics: Of, or relating to, or resulting from motion; as in forces.  

Labrum: An edge, rim or lip. In the shoulder this is located at the rim of the glenoid.  

Lateral: Denoting a position farther from the median plane or midline of the body or a 

structure.  

Lateralization: In Reverse Total Shoulder Arthroplasty, movement of the center of rotation 

of the shoulder joint or the humeral head in the lateral direction. 

Length-tension curve: The relation between a muscle's length and the isometric force which 

it generates when fully activated. In this relationship, muscle tension decreases as its length 

moves away from an optimal value. 

Lesion: Any pathological or traumatic discontinuity of tissue or loss of function of a part.  

Lesser tuberosity: The small bone protuberance on the anterolateral humeral head.  

Lines-of-action: The direction that a structure or force follows (e.g. a muscle). 

Ligament: A band of fibrous tissue connecting bones or cartilages, serving to support and 

strengthen joints. Adj. ligamentous.  

Load sensing: Of or relating to the measurement of the forces and moments applied to an 

object. 

Local coordinate system: A coordinate system which is attached to and moves with an 

object and can be used to provide a description of the objects configuration with respect to 

another reference.  

Magnetic resonance imaging: A form of medical imaging that measures the response of the 

atomic nuclei of body tissues to high-frequency radio waves when placed in a strong 

magnetic field. 

Main effect: In the analysis of variance (ANOVA) statistical method, a main effect is the 

effect of an independent variable on a dependent variable averaged across the levels of any 

other independent variable. 

Mechanical Advantage: Increasing the effectiveness of a force by applying it at a distance.  

Mechatronics: Technology combining electronics and mechanical engineering.  

Medial: Situated toward the midline of the body or a structure. Adj. medio- 
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Medialization: In Reverse Total Shoulder Arthroplasty, movement of the center of rotation 

of the shoulder joint in the medial direction. 

Moment: The tendency of a force to rotate an object about an axis when that forces is applied 

at a distance (also known as Torque).  

Moment arm: The perpendicular distance between a force and the axis it is causing a 

moment about.  

Multi-articular: Of or relating to a structure which crosses more than two joints (e.g. a 

muscle). 

Musculotendinous junctions: The transition in a muscle group between the muscular tissue 

and tendinous tissue. 

Muscle: An organ which by contraction produces movement of an animal organism. Adj. 

muscular and musculo-.  

Muscle loading ratios: Relationships between the various muscles crossing a joint which 

define the load on each relative to one primary muscle known as the ‘prime mover’.   

Non-profiled DOF: In this thesis, a shoulder rotation which is not currently commanded to 

follow a profile. 

Null hypothesis: In statistics, the hypothesis that there is no significant difference between 

two populations, or, more specific to biomechanics, two conditions.  

Off-axis loading: In pneumatic actuation, a load which is not applied collinear with the shaft 

of the piston. 

Optical tracking: The use of the physics of light to monitor the position of an object. 

Orthopaedics: That branch of surgery dealing with the preservation and restoration of the 

function of the skeletal system, its articulations, and associated structures.  

Osseous: Relating to bones. 

Output range: The minimum to maximum values a control system is allowed to output (e.g. 

muscle forces). 

Pathological: Of or relating to pathology/injury. 

Physiological: Normal, not pathologic.  

Physiologic cross-section: The cross-section of the muscle fibres calculated by measuring 

the volume of the muscle and dividing by the fibre length.  

PID (Proportional, Integral, Differential): A control algorithm that uses the error between 

input and output signals to achieve control by applying an adjustment Proportional to error, 
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by accumulating (Integrating) the error over time, and accounting for the rate of change 

(Derivative) of the error. 

Plane of elevation: A rotation degree of freedom which defines the plane in which the arm 

will elevate in. 

Plane radiography: An imaging technique in which an x-ray image is taken in a single 

direction. 

Pneumatic: Containing or operated by air or gas under pressure 

Posterior: Directed towards, or situated at the back; opposite of anterior. Adj. postero- 

Post-hoc: Occurring or done after the event. 

Power: In statistics, the power of a statistical test is the probability that the test will reject the 

null hypothesis when the alternative hypothesis is true (i.e. successfully reject the null 

hypothesis when in reality it should be rejected).  

Primary DOF: See ‘Profile DOF’. 

Process: A prominence or projection, as from a bone.  

Profiled DOF: The shoulder rotation which is currently commanded to follow a predefined 

profile. 

Protraction: The act of moving an anatomical part forward. 

Proximal: Nearest to the point of reference, as to a center or median line or to the point of 

attachment or origin. 

Pseudoparalysis: The inability to move a part of the body owing to factors, as pain, other 

than those causing actual paralysis.  

Quarter Amplitude Decay Response: The response of a control system which is balanced 

between speed of response and limitation of overshoot. 

Quasi-static: A condition in which a body is moving but at a rate for which the effects of 

acceleration and inertia can be neglected. 

Radiostereometric Analysis (RSA): An imaging technique in which two individual x-ray 

images from two planes are used to determine the 3D configuration of a structure.  

Range of motion: The arc of motion that a joint possess.  

Reduce: To restore to the normal place or relation of parts, as to reduce a fracture.  

Reduction: The correction of a fracture, luxation, or hernia.  

Retraction: The act of moving an anatomical part backward. 

Retroversion: Tipping backward.  
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Rigid body: An idealization of a solid body in which deformation is neglected 

Rotation Sequence Decomposition: The process of breaking an objects orientation down 

into discrete rotations which can be more readily interpreted. See Euler Angle Sequence. 

Rotator cuff: Group of muscles surrounding the glenohumeral joint, consisting of the 

supraspinatus, subscapularis, infraspinatus and teres minor muscles.  

Sagittal plane: A longitudinal vertical plane that divides the body into left and right 

segments.  

Scapula: Wide, thin, triangular bone (shoulder blade) opposite second to seventh ribs in 

upper part of back. Adj. scapular or scapulo- 

Scapulohumeral: Pertaining to the scapula and humerus.  

Scapulothoracic: Pertaining to the scapula and thorax.  

Secondary DOF: See ‘Non-profiled DOF’. 

Shear: A motion or force parallel to the face of an object. 

Simulator: Any device or system that simulates specific conditions or the characteristics 

of a real process for the purpose of research or operator training. Types of shoulder 

simulator are static, passive and active. Static systems apply muscle and external loads 

but do not permit specimen movement. Passive systems apply the same loads but permit 

experimenter driven motions. Active systems use muscle loading to cause joint motion. 

Spatial tracking: The process of monitoring an objects 3D position and orientation in space. 

Spherical bearing: Permits angular rotation about a central point in two orthogonal 

directions. 

Spinous fossa: The large, slightly concave area below the spinous process on the dorsal 

surface of the scapula.  

Statistical shape modelling: Geometrical analysis from a set of shapes in which statistics are 

measured to describe geometrical properties from similar shapes or different groups. 

Sternoclavicular: Pertaining to the sternum and the clavicle.  

Sternum: Elongated flat bone, forming anterior wall of chest. Adj. sterno- 

Subacromial: Relating to the articulation between the superior humeral head and the inferior 

side of the acromion. 

Subluxation: Incomplete or partial dislocation.  

Subscapularis: Muscle which rotates the arm medially.  

Superior: Situated above, or directed upward. Adj. supra-  
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Supraspinatus: Muscle which originates at the supraspinatus fossa and abducts the arm.  

Suture: A stitch or series of stitches made to secure apposition of the edges of a surgical or 

traumatic wound; to apply such stitches.  

Synovial joint: An articulation permitting more of less free motion, the union of the bony 

elements being surrounded by an articular capsule enclosing a cavity lined by synovial 

membrane.  

Tendon: A fibrous cord of connective tissue continuous with the fibres of a muscle and 

attaching the muscle to bone or cartilage. Adj. tendinous  

Teres minor: Muscle which originates on lateral border of the scapular and rotates the arm 

laterally.  

Tilting: In scapular motion, the rotation about a mediolateral axis which causes the glenoid to 

move tip anterior or posterior. 

Tool plate: The surface of a load cell that is subject to direct external loading. 

Thorax: The chest.  

Torso: See Thorax. 

Transected: Cut across or make a transverse section in something.  

Transformation matrix: A 4x4 matrix which describes both the position and orientation of a 

coordinate system with respect to a reference system. 

Transosseous: Through an osseous structure. 

Transverse: Extending from side to side; at right angles to the long axis.  

Transverse plane: Horizontal plane passing through the body at right angles to the frontal 

and sagittal planes, dividing the body into superior and inferior segments  

Trapezius: Muscle which elevates the clavicle, adducts, elevates or depresses the scapula, 

and extends the head.  

Trunk: The main part of the body, to which the head and limbs are attached.  

Tuberosity or Tuberacle: An elevation or protuberance.  

Vent: To open, or an opening or outlet. 

Version: In scapular motion, the rotation about a superoinferior axis which causes the 

glenoid to face anterior (ante-) or posterior (retro-). 
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Appendix B  – Inverse Kinematic Calculations for 
the Scapular Rotation Motor and Linkage 
System     

In this appendix, the calculations used to calculate the motor position required to achieve 

a desired level of scapular abduction are presented. The calculations are based on an 

inverse kinematic analysis using the known linkage geometry. The result of this analysis 

is a set of equations which can be used to calculate the required drive link rotation for any 

desired scapular abduction angle. This angle is then converted into a motor position 

command based on knowledge of the motor and gearhead parameters. Presented below is 

a labelled rendering of the linkage (Figure B.1) and a hand solution (Figure B.2) 

illustrating the equations which describe the relationship of interest. 

 
 
Figure B.1: Computer rendering of scapular rotation linkage. 
Shown are the pins of the linkage and the letters corresponding to the equations 
presented below. (A) Axis of motor, (B) pin between drive link and connecting link, (C) 
pin between connecting link and scapula pot, (D) hinge of scapula pot. (r1) Ground ‘link’, 
(r2) drive link, (r3) connecting link, (r4) scapula pot.  
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Figure B.2: Hand written solution for inverse kinematics of scapular rotation 
linkage. 

With the equations to calculate α and γ now known, it is possible to subtract them to yield 

the desired angle, θDrive, relative to the horizontal. However, the design of the linkage also 

dictates that when θScap= 0°, θDrive = 90°. Therefore, in order to calculate the angle the 

motor must travel, we calculate Δθ = 90° - θDrive. Δθ is then converted to motor encoder 

counts by dividing by 360°, multiplying by the number of motor counts in one revolution 

(in the current system configuration, 2000 counts/rev), and multiplying by the gear ratio 

(in the current system configuration, 100:1). This motor encoder position describes the 

motors level of rotation relative to its initialized position. Using these equations, a custom 

LabView program was written to convert the desired scapular abduction angle – which 

varies continuously as the humerus abducts during an active motion test – into a motor 

position command in real time.    
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Appendix C – Implementation of a Geometric 
Motion-Decomposition Technique for the 
Elimination of Gimbal Lock Artifacts in Real-Time 
Active Motion Kinematic Data 
C.1 Introduction 
As discussed in Chapter 5 (Section 5.1), previously reported simulators have primarily 

achieved abduction through the use of a prime mover that displaces at a predefined speed 

in order to ‘control’ the rate of abduction. These simulators have largely ignored the issue 

of actively controlling the two secondary degrees of freedom (DOF) (i.e. plane of 

abduction and internal-external rotation [IR-ER]) during abduction, and have instead 

taken a heuristic approach to achieving the desired level of rotation. In contrast, this 

dissertation aimed to achieve simultaneous active control over all three of the shoulder’s 

rotational DOF. The method discussed in Chapter 5 (Section 5.2.2) allowed the 

achievement of this goal with a high level of accuracy, but only when the arm was 

oriented at more than ~15° of abduction.  

This limitation was caused by using the Euler angle rotation sequence suggested by the 

International Society for Biomechanics (ISB) and used in previous simulator based 

investigations. Although Euler angle sequences are commonly used, they suffer from the 

mathematical phenomenon known as ‘gimbal lock’ in which the values for the first and 

third rotations in the sequence fluctuate greatly and unpredictably, because they are 

impossible to uniquely define. In the case of the shoulder, the effects of gimbal lock are 

most pronounced with the humerus in 0° abduction and slowly taper off as the arm is 

elevated to ~15°. Therefore, in the context of in-vitro shoulder simulation, it is not 

possible to clearly define the physiologic rotations required of the two secondary DOF 

when the arm is in this orientation. The ability of previous simulators was not affected by 

this complication as they did not rely on real time kinematic data to achieve motion. Once 

this phenomenon was recognized as the source of difficulty in controlling these two DOF, 

a new motion decomposition method, which avoided gimbal lock, was pursued. 
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C.2 Materials and Methods    
A review of the literature identified a number of methods for eliminating the effects of 

gimbal lock. Kedgley (2004) describes how the limitation of the YXY shoulder Euler 

angle sequence can be overcome by assuming a value for one of the two secondary DOF. 

This method can be applied in protocols where one value is well known and readily 

assumed, such as in an axial rotation test in adduction, where it is known that the plane of 

abduction is effectively 0°; however, in the case of active unconstrained shoulder motion, 

it is impossible to make such an assumption. As an alternative, Ishida (1990) and 

Novotny, Beynnon, and Nichols (2001) each suggested integrating measured axial 

rotation angular velocities to calculate an accumulated rotation from a known starting 

orientation. Unfortunately, angular velocity data is often obtained by taking the derivative 

of position data, which is known to produce high levels of noise and thus large 

accumulated error. Masuda, Ishida, Cao, and Morita (2008) proposed the redefinition of 

humeral axial rotation using a term in the rotation matrix which is stable at the gimbal 

lock position; however, with this definition, when the arm is abducted from 0° to 90° 

while physically holding the level of axial rotation constant, the calculated value would 

change by 90°. Finally, using the general Joint Coordinate System (JCS) technique of 

Grood and Suntay (1983), Amadi and Bull (2010) proposed a geometric motion 

decomposition method for the shoulder (from this point forward referred to as GMD). 

This technique uses basic geometric analysis, rather than the interpretation of a rotation 

matrix, to discretize the three rotations of the shoulder. Amadi and Bull (2010) validated 

this GMD algorithm by applying it to raw data drawn from a paper by Fung et al. (2001) 

and comparing their determined rotations to those determined in the paper using the 

standard Euler angle sequence. The authors found that the results from their GMD 

method were in close agreement with those of the standard Euler sequence and only 

noticeably differed during forward flexion motions in the sagittal plane. The primary 

limitation of this method lies in that the solution technique differs for motions that are 

primarily composed of abduction versus those primarily involving flexion. However, the 

authors proposed a simple test to determine which of these two types of motion the 

shoulder is currently oriented in, making it possible to switch between the two solution 

techniques if/when the motion changes. 
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After considering each of these techniques, the constraints related to the technologies 

currently used on the simulator, and the types of testing to be performed, it was decided 

that the GMD method of Amadi and Bull (2010) would be capable of producing the most 

robust and readily achievable solution. As detailed in their paper, the glenohumeral joint’s 

motion is uncoupled by determining and then removing each rotation in a stepwise 

manner as follows: 

1) Identify the primary motion (abduction vs flexion) by comparing the 

magnitude x and y components of humeral x-axis 
a. If y>x, primary motion is abduction, otherwise, it is flexion 

2) Coupled rotation of non-primary motion is determined, reported and then 

decomposed from primary before quantifying the magnitude of the primary’s 

rotation (i.e. remove flexion when abduction is primary) 
a. This angle is quantified as the magnitude of the rotation about an axis 

perpendicular to the superior humeral and anterior scapular axis 

required to bring the humerus into the coronal plane of the scapula 
b. Once this angle is determined, the relevant humeral axes can be rotated 

in the opposite direction, to subtract this rotation, using the Rodrigues 

equation for rotation of a vector about another vector 
3) Primary rotation is then determined, reported, and subtracted from new joint 

orientation resulting from step 2  
a. This angle is quantified as the magnitude of the rotation between the 

new humeral superior axis and the unchanged scapular superior axis 
b. The superior humeral axis is then brought into alignment with the 

superior scapular axis by rotating the relevant humeral axis about the 

anterior scapular axis in the opposite direction to the determined angle. 
4) Internal-external rotation is then determined, reported, and subtracted from the 

new joint orientation resulting from step 3 
a. This angle is quantified as the magnitude of the rotation between the 

current humeral lateral axis and the unchanged scapular lateral axis 
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b. The humeral coordinate system is then brought into full alignment with 

the scapular system by rotating the relevant humeral axis about the 

superior scapular axis in the opposite direction to the determined angle.     
5) The success of this decomposition process can then be assessed by viewing the 

final rotation matrix relationship between the two coordinate systems which 

should correspond to the identity matrix. 

This GMD technique was implemented through a custom LabView program that enabled 

the five steps outlined above to be carried out on real time kinematic data output with 

respect to the humeral and scapular coordinate systems as described in Chapter 5 (Section 

5.2.1).  

There is no information in the literature demonstrating the use of this GMD technique 

with real time data derived from a 6 DOF tracking system. Therefore, once implemented, 

the program was evaluated to ensure the calculated results were valid. Three motions 

were assessed: internal-external rotation with the humerus in 0° of abduction and 

abduction from 0° to 90° with the humerus held in a relatively constant plane of 

abduction and level of axial rotation (both affected by gimbal lock), and horizontal 

flexion and extension in 90° of abduction (unaffected by gimbal lock). Each of the 

motions was manually applied by the experimenter. Kinematic data were recorded 

throughout each motion using an Optotrak Certus (Northern Digital Inc, Waterloo, ON) 

marker attached to each bone, and using standard scapular and humeral coordinate 

systems as described in Chapter 3 (Section 3.2.1). To ensure the results were not 

influenced by joint translations, a shoulder phantom whose glenohumeral joint was 

substituted by a universal joint was used (Figure C.1).  

Rotations were computed using the raw kinematic data recorded for each motion using 

the GMD method and the standard shoulder Euler angle sequence method. These 

rotations were then compared to assess overall agreement. Additionally, the linear 

algebraic Trace function was calculated for each rotation matrix that resulted from the 

decomposition, and these were then averaged over all frames of motion. The ideal value   
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Figure C.1: Shoulder phantom used in assessment of kinematic analysis techniques. 
The shoulder phantom was composed of a plastic scapula model and aluminum rod 
representing the humerus, connected by a universal joint. The scapula and humerus were 
each equipped with an optical tracking marker to monitor their motion during testing. A 
coordinate system was defined for each bone using anatomical point digitizations as 
outlined in Chapter 3 (Section 3.2.1). Note that in the case of the humerus, the rod was 
specifically designed to accommodate the attachment of an anatomically correct distal 
humerus model in order to facilitate the acquisition of accurate landmark digitizations. 
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of this outcome is a mean value of 3, with deviations from this value representing 

mathematical errors in the algorithm’s estimate of the three rotations.   

C.3 Results 
As expected, for all motions tested, the average difference between the angles calculated 

for the abduction DOF by the two techniques was small (0.79±0.63°).  

During the flexion-extension motion test, the angles calculated for the plane of abduction 

DOF by the two techniques were nearly equal (0.29±0.23°). The average difference 

between the angles calculated for the IR-ER DOF by the two techniques was 3.67±2.28°; 

however, this value was only this small because the calculated differences were equally 

spread between positive and negative. In reality, despite the phantom being locked in this 

DOF, the values calculated by the Euler sequence actually varied by ~12°, while the 

results of the GMD technique only varied by ~2° (Figure C.2).  

For the IR-ER motion test in 0° of abduction, as anticipated, the angles calculated for the 

plane of abduction and IR-ER DOF using the Euler sequence were unrepresentative of the 

true joint orientation and varied widely across the motion. The angles calculated for the 

plane of abduction DOF using the GMD method were constant across the motion, while 

the angles calculated for the IR-ER DOF varied by ~50° across the motion, which was in 

agreement with what was observed during testing (Figure C.3).   

For the abduction motion test, the angles calculated for the plane of abduction and IR-ER 

DOF using the Euler sequence were also unrepresentative early in the trial, but these 

reached meaningful values when the arm was in >15° of abduction (Figure C.4). On the 

other hand, the angles calculated for these DOF using the GMD method were stable and 

exhibited variations of <15°. 

The average Trace for the decomposition of each of these three motions was 2.995-3.00 

(SD: 0.00-0.0068), indicating that the final decomposed humeral coordinate system was 

in close alignment with the scapula’s coordinate system. 
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Figure C.2: Flexion-extension motion with arm held in 90° of glenohumeral 
abduction.  

 

 

Figure C.3: Internal-external rotation motion with arm held in 0° of glenohumeral 
abduction. 
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Figure C.4: Abduction motion in scapular plane. Note that the plane of abduction 
and axial rotation DOF were held constant. 
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C.4 Discussion  
Implementing a method to overcome the limitations of standard Euler angle analysis is an 

important step in improving the validity of the current in-vitro shoulder simulator, and 

was precipitated by the desire to not only control abduction but also the plane of 

abduction and axial rotation. The GMD method of Amadi and Bull (2010) was chosen 

ahead of all other alternatives presented above because it appeared to provide a robust 

solution to the problem of gimbal lock without requiring the implementation of new 

motion tracking technologies or changing the current clinical definitions of shoulder 

rotation.  

Results for the abduction DOF are equivalent to those of the ISB recommended YXY 

Euler rotation sequence across the range of motion tested and the remaining DOF show 

strong agreement to the Euler results when the arm is manipulated in higher levels of 

abduction. Additionally, gimbal lock – the unpredictable, non-physiologic rotations which 

characterize the results of the Euler angle sequence when the arm is below 15° of 

abduction – was successfully avoided using this GMD technique. Although it was not 

possible to compare the results of the GMD technique to a gold standard when the arm 

was in adduction, the results were in agreement with the ranges of internal and external 

rotation observed during testing.  

For the tests assessed in this appendix, the average Trace value demonstrated that the 

final humeral rotation matrix was extremely well aligned with the scapular coordinate 

system. This finding indicates that the accuracy of the results of the GMD technique does 

not degrade at any orientation throughout the large range of motion assessed. The value 

of the Trace was observed to decrease when approaching the transition between a 

primarily abduction vs flexion motion. However, since there is no intention to test multi-

DOF motions that purposefully switch between the two primary rotations (e.g. cross body 

motions) using this simulator, this finding was considered insignificant.  

The geometric motion decomposition (GMD) technique originally described by Amadi 

and Bull (2010) and presented here is therefore a valid and robust method for the 
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transformation of glenohumeral kinematics into clinically meaningful rotations. It 

produces similar results to the commonly used Euler analysis method, but avoids the 

mathematical ambiguity of gimbal lock. Therefore, this technique will serve as an 

important means to further enhance the experimental validity of the simulator by enabling 

the system to control all rotational DOF of the shoulder in any orientation, including 

those previously precluded by the use of Euler analysis.     
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Appendix D – Full Range of Adjustability of 
Custom Modular Reverse Total Shoulder 
Arthroplasty Components 

In this appendix, photographs and computer renderings (Figure D.1 to Figure D.5) – in 

addition to those in Figure 6.2 and Figure 6.3 – are presented to illustrate the full range of 

adjustability permitted by the custom modular Reverse Total Shoulder Arthroplasty 

described in Chapter 6 (Section 6.2.1). Note that the 38mm glenosphere and polyethylene 

humeral cup are shown in all renderings except when size is the variable being 

demonstrated. However, all adjustability shown with 38mm components can also be 

achieved with the 42mm implants.   

 
Figure D.1: Glenosphere sizes for custom modular implant. 
This photograph shows the two glenosphere sizes (38 and 42mm) currently used with our 
custom modular implant system. (Top) Top view of the two glenosphere sizes, (Bottom) 
side view of the two glenosphere sizes. 
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Figure D.2: Available humeral polyethylene cup retention levels. 
These photographs show the level of retention provided by each of three polyethylene 
humeral cups in the 38 and 42mm curvature sizes. The top two rows show the top view of 
the 38 and 42mm cups, respectively. The bottom two rows show the side view of the 38 
and 42mm cups, respectively, with the corresponding glenosphere articulated. The three 
columns correspond to the levels of retention which are: highly mobile, standard, and 
retentive. 
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Figure D.3: Adjustability of humeral polyethylene cup thickness, and humeral lateralization. 
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Figure D.4: Adjustability of humeral retroversion, and humeral head-neck angle. 
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Figure D.5: Adjustability of glenosphere size, and glenosphere lateral and inferior offset.  
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Appendix E – Evaluation of the Accuracy of 
Transformed Six DOF Load Measurements 
Made Using a Glenosphere Embedded 
Load Cell  

E.1 Introduction 
Accurately measuring and providing a full description of the loads passing through the 

articulation of a Reverse Total Shoulder Arthroplasty (RTSA) is of primary importance 

when evaluating the effects of this implant, and can be achieved through the use of a six 

degree of freedom (DOF) load cell. Currently, however, no commercially available six 

DOF load cell has an appropriate sensing range and is small enough to be implanted in 

such a way that its sensing origin coincides with the joint center, and its sensing 

coordinate system (CS) is aligned with a physiologically relevant CS. As described in 

Chapter 6 (Section 6.2.1.2), this obstacle was overcome by designing a custom 

glenosphere component in which a load cell (Nano 25, ATI-IA, Apex, NC) could be 

nested. The loads measured by this sensor were then transformed from the load cell’s CS 

into a desired physiologic CS of interest (e.g. a CS at the joint center, a CS coincident 

with the clinical baseplate fixation location, etc…). In order to ensure that the measured 

loads could be accurately transformed, a validation process was undertaken.  

E.2 Methods 

The transformation of forces and moments from one coordinate system to another can be 

performed using first principles and basic knowledge of the load magnitudes and 

directions, as well as the spatial configuration of the system of interest; however, the use 

of first principles becomes difficult and cumbersome when attempting to analyze a 

complex system or a system which must be analyzed in three dimensions. Particularly 

useful in these cases, are standard kinematic transformation matrix techniques that have 

been adapted for the transformation of forces and moments.  

The following equations can be used to transform forces and moments, respectively, from 

one CS, namely the load cell measurement frame (LC), to another (e.g. a joint CS, JCS): 
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Eq. E.1: Coordinate system transformation of measured forces using spatial math. 
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Eq. E.2: Coordinate system transformation of measured moments using spatial math. 

where 𝐹𝑥,𝑦,𝑧
𝐽𝐶𝑆  & 𝑀𝑥,𝑦,𝑧

𝐽𝐶𝑆  are the x, y, and z components of the measured forces & moments, 

respectively,  transformed into the joint coordinate system; 𝑅𝐿𝐶
𝐽𝐶𝑆  is the rotation matrix  

describing the orientation of the load cell CS with respect to the JCS; 𝐹𝑥,𝑦,𝑧
𝐿𝐶  & 𝑀𝑥,𝑦,𝑧

𝐿𝐶  are 

the x, y, and z components of the measured forces & moments, respectively, in the load 

cell CS; and 𝑃�⃗ 𝐿𝐶
𝐽𝐶𝑆

 is the position vector describing the location of the load cell CS with 

respect to the joint CS (Bertec Corporation, 2012).  As demonstrated by equations Eq. E.1 

& Eq. E.2, these transformations depend on a clear understanding of the spatial 

relationship between the two coordinate systems. This relationship can be obtained 

through a series of digitizations; however, this introduces additional errors to the load 

values beyond those inherent in load cell measurements.  Therefore, a testing apparatus 

and protocol was developed to evaluate the accuracy of the transformed loads. 

The testing apparatus was composed of six main components: a method of load 

application, the RTSA implants, the embedded primary load cell, an implant positioning 

system, a secondary load cell, and a six DOF tracking system (Figure E.1). Loads were 

applied using a pneumatic actuator that was fixed to a rigid frame. Attached to the 

actuator was a small pot in which the polyethylene humeral cup was cemented in place 

such that the face of the cup was perpendicular to the actuator shaft. An adjustable x-y 

stage was placed on the base of the rigid frame and on top of it, an arc positioning device 

that allows a slider to be positioned between 0° (facing vertically) and 90°. The secondary 

six DOF load cell (Mini 45 ATI-IA, Apex, NC) was attached to the slider, and, via an 

adapter plate, it was attached to the primary six DOF load cell embedded in the RTSA 
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Figure E.1: Load transformation validation testing setup. 
Shown is the testing setup used to evaluate the transformation of six DOF loads recorded 
by the implant embedded load cell to another arbitrary coordinate system. (A) Pot used to 
hold polyethylene cup (attached to pneumatic actuator-not shown), (B) Reverse Total 
Shoulder Arthroplasty implant components, (C) implant embedded primary load cell, (D) 
implant positioning apparatus (shown is the arc and slider, used to change glenosphere 
orientation, which is mounted to an x-y stage), (E) secondary load cell. Note that the six 
DOF tracking system used in this testing setup is not shown.  
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glenosphere component. The slider mechanism enabled the glenosphere and attached load 

cells to be rotated from 0°, aligned with the actuator for a purely compressive load, to 

90°, a purely shear load. As well, the x-y stage enabled the glenosphere to be translated 

until it properly articulated the actuator mounted humeral cup. Finally, the six DOF 

tracking system (Optotrak Certus, NDI, Waterloo, ON) was implemented by placing a 

reference marker on the slider mechanism so that it was rigid relative to the two load 

cells.  

This apparatus allowed the comparison of the loads measured by the secondary load cell 

to the forces and moments measured by the glenosphere-embedded load cell after 

transforming them to the secondary load cell’s CS. The accuracy of transforming the six 

DOF loads measured by the primary load cell could then be assessed. For the purposes of 

this evaluation, the variables LC and JCS in equations Eq. E.1 & Eq. E.2 correspond to 

the primary load cell and the secondary load cell, respectively. Using an optically tracked 

stylus and the rigid reference described above, landmark digitizations were recorded for 

both load cells at well-defined markings on each sensor. These markings corresponded to 

each sensor’s load measurement axes and their digitization therefore enabled the 

construction of optically tracked coordinate systems coincident with each of the sensor’s 

load sensing frame.  

A number of different loading configurations and levels encompassing a range of 

physiologically relevant joint angles and loading magnitudes were examined. 

Specifically, loads were applied at 0° (purely compressive), 30, 45, and 50° (full 

adduction when implant head-neck angle is accounted for). Sixty degrees was to be tested 

originally, but the humeral cup impinged on the load cell at this angle and thus 50° was 

tested instead. At each of these angles, five load magnitudes (0, 25, 50, 75, 100 N) were 

applied. These loads were applied as a ramp over the course of five seconds and were 

held for three seconds once the maximum was achieved. 

For each of the 20 loading cases, the average value over the three second hold was 

calculated for each of the six loading components for both load cells. The values for the 

primary load cell were then transformed using equations Eq. E.1 & Eq. E.2 with the 
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coordinate transformations drawn from the landmark digitizations. The difference 

between each of the six transformed load values and the six loads measured by the 

secondary load cell were then subtracted to find the absolute difference. The average 

percent difference between the two values was calculated for each degree of freedom 

using the total force or moment measured by the secondary load cell as the true value. 

Instead of using each individual load measured by the secondary load cell, the sum of the 

three force/moment components were used for the force and moment percent differences, 

respectively, because some of the individual load components were so small that percent 

differences were unrealistically large. These values were then averaged over all 20 cases 

in order to give an overall estimate of the transformation accuracy. Repeatability was 

calculated for a subset of cases (all load levels at 0° & 50° load configurations) in which 

three repeated trials were performed. The average of all of these cases was then 

calculated.                    

E.3 Results 
Comparison of the transformed results to those measured using the secondary load cell 

demonstrated that differences ranged from <0.5 N for all joint configurations with 0 N 

loading, to 2.6 N in the 50° configuration with 100 N loading applied. With the exception 

of this maximum value, all differences in force were ≤2 N (Figure E.2). The value of the 

moments from the two load cells for 0, 30 & 45° configurations at all load levels were 

nearly equal and never exceeded 0.04 Nm. However, in the 50° configuration, the 

differences in moment values between the transformed and secondary measurements 

increased more rapidly as load increased, and reached a maximum of 0.1 Nm at 100 N 

(Figure E.3). The percent difference of all test cases together was found to be ≤2.9±1.7% 

for the x & y forces and 1.2±1.4% for z, while the differences in moments were 

~12.4±11.7% in the x & y and 3.4±4.1% for z. Finally, the average repeatability in the 

transformed forces and moments was ±0.1 N and ±0.01 Nm, respectively.     

 

 

 



www.manaraa.com

250 

 
Figure E.2: Force difference between transformed primary readings and secondary 
load cell measurements.  
Note that the data are the average of the three axes and presented for the four joint 
orientations. 
 

 
Figure E.3: Moment difference between transformed primary readings and 
secondary load cell measurements.  
Note that the data are the average of the three axes and presented for the four joint 
orientations.  
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E.4 Discussion 
Measurement of the joint loads passing through the RTSA and description of these loads 

with respect to any number of clinically relevant coordinate systems (e.g. joint center, 

fixation location etc.) were critical criteria when developing the custom components 

described in Chapter 6. In this Appendix, the accuracy of transforming the measured 

loads to another coordinate system – in this case, the coordinate system of a secondary 

load cell – is assessed. This evaluation demonstrates that the difference between the 

transformed loads and those measured by the secondary load cell increased linearly with 

applied load for both the forces and moments. Differences in the forces were seen to 

slightly increase with increasing joint angulation, but in the case of the moments, the 

differences were nearly identical at all load levels with the joint in 0, 35, and 45°. 

However, in the most angulated case (i.e. 50°), the differences in moments markedly 

increased. It is unsurprising that the differences in the moments would become greater 

with higher levels of angulation, since higher levels of angulation increase the effective 

moment arm and thus the applied moments, but is surprising that an abrupt rather than 

progressive increase was observed. A possible explanation is that the 50° configuration 

may have resulted in a portion of the applied load bypassing the primary load cell since 

this configuration represents an arm in adduction which, in the case of RTSA, can 

sometimes cause impingement between the humeral cup and underlying bone (or in this 

case, the underlying base).  

The average percent differences across all configurations were small (≤2.9%), well within 

acceptable ranges for a system that includes load measurement errors and transformation 

errors related to optical tracking. In the case of the z axis, which was expected to 

experience the greatest portion of the transmitted load, differences averaged only 1.2%. 

The percent differences in moments were found to be markedly higher than observed in 

the forces (3.4-12.4%). These differences can be attributed to a number of factors 

including load cell measurement error, transformation error, error in the experimental 

setup, and the small magnitude of the moment values. The load cells used in this 

evaluation are both rated to ~2% error of their full scale moment readings for each axis, 

and thus, the higher percent differences in the moments may be explained by the fact that 
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their measurements represent a much smaller percent of the sensor’s maximum range than 

is the case in the force measurements. A 2% load cell error would therefore have a more 

significant effect on the readings. Transformation error may also play an important part in 

the differences observed in the moments because, as demonstrated in equation Eq. E.2, 

the transformed moments are subject to error from transformation of the measured 

moments into the new coordinate system as well as error from the portion of the 

transformed moments produced by the transformed forces. In other words, the 

transformations of these forces possess inherent error which is compounded by error in 

the determination of the moment arms these forces act at.  

In an effort to further explain the large differences seen in the 50° orientation, Figure E.4 

was created to compare the differences in the resultant force measured by the two load 

cells. The data in this graph demonstrate that the magnitude of the resultant of all three 

force components are in close agreement for the first three joint orientations but diverge 

in the 50° angulation. This divergence in the resultant forces indicates that some 

phenomenon is preventing the entire load from being measured by both sensors. As a 

result, the differences in moments appear to be more a function of differences in the 

measured forces than in the transformation process. It is possible to attribute these 

differences to error in the load cells, but since the differences for the other orientations 

never approach this level, it is more likely that some form of error in the experimental 

setup is responsible. 

An important consideration when assessing the percent differences presented here is that 

the ‘true value’ readings from the secondary load cell are themselves subject to a rated 

error of 2% of full scale per axis. However, the full scale range of the secondary load cell 

is much greater than that of the primary (2.3 times greater force and moment range in 

both the x & y axes), and therefore, it is likely that a large portion of the observed 

differences can be attributed to the markedly larger errors associated with the secondary 

load cell. 

It is important to note a limitation associated with this evaluation of the errors in 

transforming the loads measured by the glenosphere load cell. Specifically, the loads  
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Figure E.4: Differences between resultant forces measured by each load cell.  
Note that the data are the differences between the two load cells for the resultant forces of 
the three force components taken together. 
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applied to the glenosphere in this protocol did not reach the magnitude experienced 

during active motion testing due to the maximum load which could be applied by the 

actuator used in this testing setup. As a result, it is possible that the level of error 

observed in this study does not reflect the error which is present during active motion 

simulation. However, the percent error was not observed to increase markedly across the 

five load levels and thus it can be suggested that the percent error during active motion 

would be similar.     

The results presented here have demonstrated that the load cell and transformation 

methodology used in Chapter 6 can be considered accurate and repeatable with respect to 

the transformation of the measured forces. The transformed moments were also very 

repeatable. The percent differences observed between the measured and transformed 

moments were markedly higher than those observed for the forces; however, due to the 

factors discussed above, it is believed that these differences may be heavily influenced by 

the secondary load cell. Also, the relatively small magnitude of the measurements may 

have resulted in misleadingly large percent differences, and thus the effect that these 

difference may have on the clinical interpretation of the moments may be minimal.  
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